机器学习
面包片片
这个作者很懒,什么都没留下…
展开
-
错误:Resource punkt not found. Please use the NLTK Downloader to obtain the resource:
从https://www.nltk.org/data.html下载punkt包。放到下面任意一个目录中。原创 2023-12-07 19:09:21 · 936 阅读 · 0 评论 -
机器学习为什么归一化(normalization)
1.什么是归一化将数据的数值规约到(0,1)或者是(-1,1)区间,让各维度数据分布接近,避免模型参数被分布范围较大或者较小的数据支配。2.为什么归一化机器学习的目标就是不断优化损失函数,使其值最小,未归一化时,使用梯度下降时,梯度方向会偏离最小值方向,使梯度更新总很多弯路,归一化之后,损失函数曲线变得比较圆,有利于梯度下降。加快梯度下降,损失函数收敛;—速度上提升模型精度–也就是分类准确率.(消除不同量纲,便于综合指标评价,提高分类准确率)—质量上防止梯度爆炸(消除因为数据输入差距(1和2原创 2022-04-20 10:12:29 · 2532 阅读 · 0 评论