Self-supervised Heterogeneous Graph Neural Network with Co-contrastive Learning

1.基本概念

  • Heterogeneous Information Network(异构信息网络)
    分别表示节点集合,连接关系集合,节点类型集合,连接关系类型集合,节点类型映射,连接关系类型映射。例如图中三种类型的节点(author,paper,subject),两种连接关系类型(write,belong to)

  • Network schema(网络模式)
    相当于对异构图的一个抽象表示,以节点类型集合作为新的图顶点集,连接关系集合作为边集合,形成了网络概要模式。用于描述不同节点之间的直接连接关系,捕获局部结构

  • meta-path(元路径)
    不同的元路径表示不同的语义,例如PAP(表达两篇文章由同一作者所写),PSP(描述两篇文章属于同一个学科),捕获高阶结构。给定一个元路径,每个节点有很多基于元路径的邻居节点
    在这里插入图片描述

  • self-supervised
    数据不用打标签,从数据本身寻找监督信号,原先损失函数定义为预测值和标签的交叉熵(学习的目标是使预测值和真实值尽可能接近),现在定义损失不用数据标签,而是从数据本身的监督信息出发(学习的目标是)

  • contrastive learning
    一种典型的自监督学习方法,从数据中提取正样本和负样本,学习的目标是最大化与正样本的相似性,最小化与负样本的相似性

  • self-supervised 和 supervised的区别
    监督式的训练数据需要有lable,学习的目标是使模型的预测值和真实的label尽可能接近(损失函数常使用交叉熵来衡量这种相似性),自监督学习不用label,而是从数据中自己提取监督信号,优化目标根据提取的自监督信号来定义,本质一样,区别只是损失函数的定义上

2.文章创新点

  • 传统的HGNN(Heterogeneous graph neural networks)使用的半监督式学习,需要数据标签。
  • 本文模型使用 自监督学习方式(对比学习)来学习异质图节点的嵌入,数据不需要标签self-supervised ( contrastive learning)
  • 为生成更高质量的负样本,对HeCo方法提出两种扩展。

3.HeCo如何学习节点的嵌入(模型简述)

通过两个view对节点进行编码(聚合邻居信息先获得一个不太准确的嵌入),在两个view下聚合信息时,使用mask机制。为了使在两个view学习到的嵌入更准确,使用对比学习机制(学习到的最终结果是与正样本之间相似度尽可能大,与负样本的相似度尽可能小,选取正负样本时使用cross-view机制),基于对比学习定义对比损失函数,不断优化最终学习到每个节点在两个view下的准确嵌入。
HeCo流程概括:基于两个View和mask,基于GNN聚合邻居节点得到每个节点的初步表示,然后通过选取正负样例构造对比损失,优化损失函数学习到节点最终的embedding。

在这里插入图片描述

4.HeCo模型设计细节

4-1 Node Feature Transformation

由于异构图有多种不同类型的节点,所以先预处理,将不同节点的特征映射到相同的向量空间(让不同类型节点的特征向量维度一样,便于后续任务),将每个节点的特征都映射成d维的向量。
图注:不同类型的节点的权重参数和bias不同,每种类型设置一次
在这里插入图片描述

4-2 Network Schema View Guided Encoder

1)同一类型的不同邻居节点对当前节点的embedding贡献程度不一样,设置基于node-level的注意力机制。不断聚合邻居信息,学习到节点基于当前类型的embedding。每个邻居节点与当前节点设置一个注意力系数。
在这里插入图片描述
图注:计算每个邻居节点对当前节点的重要程度,||(将两个节点特征矩阵连接),a是一个2d × 1的attention vector
在这里插入图片描述
2)不同类型的邻居对当前节点的embedding贡献程度不一样,设置基于type-level的注意力机制。基于每种类型学习到一个当前节点的embedding,通过聚合这些学到的embedding得到节点最终的嵌入
在这里插入图片描述
图注:m类型下目标节点集中,每个目标节点的embedding先计算重要程度,再归一化即type-level的注意力系数。

4-3 Meta-path View Guided Encoder

图注:基于meta-path聚合特定节点类型的邻居信息,每条meta-path会得到一个embedding,使用semantic-level attentions注意力机制,聚合各个meta-path下的embedding,得到节点最终的嵌入。
在这里插入图片描述
图注:计算注意力系数
在这里插入图片描述

4-4 View Mask Mechanism

在基于network view 和 meta-path view生成embedding过程中,使用了view mask。
network view:如果目标节点是P1,聚合邻居节点(Author:A1和A2)(Subject:S1),隐藏其自身的信息(聚合邻居信息时,没聚合自身的特征 hi)
meta-path view:如果目标节点是P1,使用mask直接将A1和S1忽视,P1的邻居节点是P2和P3
在这里插入图片描述

  • Collaboratively Contrastive Optimization()
    1)为了方便计算对比损失,将每个节点在view下学习到的embedding放入MLP(一个隐藏层),映射成方便计算对比损失的形式。
    在这里插入图片描述
    2)选目标节点的正负样例-对比学习
    原则:计算目标节点与邻居节点在所有meta-path中共现的次数,若超过规定的阈值,则是目标节点的positive samples,否则是negative samples。
    图注:应该使用了mask机制,统计的都是同类型的节点(论文图中可看出)
    在这里插入图片描述
    图注:总损失函数(network view下的对比损失+mata-path view下的对比损失)

在这里插入图片描述
总对比损失,系数γ平衡两个view下的对比损失
在这里插入图片描述
通过反向传播,优化损失函数,学习到节点的embedding,下游任务使用meta-path下学习到的embedding

4-5 Model Extension

为了进一步提升模型(对比学习),提出两种新的负样本生成策略,增加了负样本的数量
1)HeCo_GAN(proposed HeCo + discriminator D + generator G)
除了从HIN中选取的负样本之外,另外使用GAN为每个节点生成额外的负样本
proposed HeCo:
用前面提出的HeCo模型先初步生成节点在两个view下的嵌入,用于训练生成器和判别器
discriminator D:
学习的目标:能识别出来自HIN是正样本,来自生成器的样本是负样本(让当前节点与正样本之间概率大,与生成器生成的样本的概率要小)
在这里插入图片描述
图注:network schema view下的损失
在这里插入图片描述
图注:两个view下的总损失
在这里插入图片描述

generator G:
生成器如何生成负样本: 对节点的嵌入构造高斯分布,从分布中选取接近的值当做负样本,然后放入MLP加强。
在这里插入图片描述

用两个view下学到的节点嵌入去交替训练判别器和生成器,训练判别器(使其能识别出来自view的嵌入为正样本,生成器生成的为负样本),然后训练生成器来生成负样本,两个步骤交替进行。模型训练完成之后,对于给定的节点的嵌入,可使用训练好的生成器来生成高质量的负样本,和原始的负样本一起去训练HeCo模型。

2)HeCo_MU
思想:混合负样本,来获得更负的样本。
计算节点与负样本节点集中的余弦相似度,选取K个相似度小的样本,对其混合生成K个更负的样本,加入HeCo模型的训练,此过程不增加额外的训练参数。(如何对负样本进行混合??简单的对负样本进行连接吗

7.view mask mechanism

为什么对节点进行隐藏???隐藏之后能加强对比???
怎么对负样本混合,使其更负
生成器构造高斯分布原理是什么??

  • 3
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
对比式自监督学习是一种无监督学习的方法,旨在通过通过训练模型来学习数据的表示。这种方法在计算机视觉领域中得到了广泛的应用。 对比式自监督学习的核心思想是通过将数据例子与其在时间或空间上的某种变形或扭曲版本对比,来训练模型。这种对比鼓励模型捕捉到数据的关键特征,从而学习到更好的表示。 对比式自监督学习的一个常见应用是图像的自学习。通过将图像进行旋转、剪切、缩放等变形,来构建一个正样本(原始图像)和负样本(变形图像)对。然后将这些对输入到一个深度神经网络中进行训练,以学习图像表示。训练过程中,网络被要求将正样本和负样本区分开,从而学习到图像的特征。 对比式自监督学习有许多优点。首先,它不需要标注数据,使其适用于大规模的无标签数据。其次,由于数据自动生成,可以轻松地扩展到大数据集。另外,对比式自监督学习的模型可以用于其他任务的迁移学习,使得模型更通用。 然而,对比式自监督学习也存在一些挑战和限制。首先,生成变形样本的过程可能会降低数据的质量,从而降低学习效果。其次,选择合适的变形方式和参数也是一个挑战。另外,对于某些领域和任务,对比式自监督学习可能不适用或效果不佳。 总之,对比式自监督学习是一种有效的无监督学习方法,可用于数据表示学习。它在计算机视觉领域有着广泛的应用,并具有许多优点。然而,仍然需要进一步的研究和发展来克服其中的挑战和限制。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值