异构图
文章平均质量分 88
面包片片
这个作者很懒,什么都没留下…
展开
-
Detecting Communities from Heterogeneous Graphs:A Context Path-based Graph Neural Network Model
1.异构图如何学习节点的嵌入传统方法基于meta-path学习节点的嵌入,捕获高阶关系缺点:定义有意义的meta-path需要专业知识本文方法基于context path捕获节点之间的高阶关系,构造基于context path的图神经网络(CP-GNN)2.预备知识异构图进行社区检测的两个主要方法1)一个社区内只包括一种类型的节点 (本文的方法)2)一个社区内包含多种类型的节点List item...............原创 2022-06-01 17:13:45 · 665 阅读 · 4 评论 -
MetaPath2vec:异质图Graph Embedding
论文:metapath2vec: Scalable Representation Learning for Heterogeneous Networks期刊:KDD 20171.Introduction传统方法中,一般将网络转化成邻接矩阵,然后使用机器学习来挖掘网络中的信息,学习嵌入,但是邻接矩阵通常很稀疏。对于复杂网络的表示学习,一些基于神经网络的模型也有非常好的效果,例如(DeepWalk,node2vec,以及LINE)但上述算法仅适合包含一类节点和边的同构网络,不能很好的用于包含多种顶点类型转载 2022-05-31 11:13:10 · 488 阅读 · 0 评论 -
Self-supervised Heterogeneous Graph Neural Network with Co-contrastive Learning
1.基本概念self-supervised数据不用打标签,从数据本身寻找监督信号,原先损失函数定义为预测值和标签的交叉熵(学习的目标是使预测值和真实值尽可能接近),现在定义损失不用数据标签,而是从数据本身的监督信息出发(学习的目标是)contrastive learning一种典型的自监督学习方法,从数据中提取正样本和负样本,学习的目标是最大化与正样本的相似性,最小化与负样本的相似性self-supervised 和 supervised的区别监督式的训练数据需要有lable,学习的目标是使模原创 2022-05-13 16:44:29 · 1967 阅读 · 0 评论