【LLL lattice reduction】

introduction

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

Analysis

在这里插入图片描述
在这里插入图片描述

Implement

import numpy as np
from decimal import Decimal
import math


def Hadamard(v):
    n = len(v)
    detL = abs(np.linalg.det(v))
    detL = Decimal(str(detL))
    product = 1
    for i in range(n):
        product *= np.linalg.norm(v[i])
    product = Decimal(str(product))
    ab = detL / product
    res = math.pow(ab, 1 / n)
    return res


"""
随机生成一个v*v矩阵的优质基,
上限为N,
Hadamard下限是h
"""


def random_basis(N, v, h):
    res = np.random.randint(-N, N + 1, (v, v))
    while Hadamard(res) < h:
        res = np.random.randint(-N, N + 1, (v, v))
    print(Hadamard(res))
    return res


test_1 = np.array([[11, 0], [0, 1]])


def orthogonal(m):
    n = np.shape(m)
    M = np.zeros(n, dtype=np.float64)
    n = n[0]
    M[0, :] = m[0, :]
    for i in range(1, n):
        M[i, :] = m[i, :]
        for j in range(0, i):
            u_ij = np.dot(m[i, :], M[j, :]) / (np.linalg.norm(M[j, :]) ** 2)
            M[i, :] -= u_ij * M[j, :]
    # print('H:' + str(Hadamard(M)))
    return M


def lll(v):
    n = np.shape(v)
    n = n[0]
    k = 2
    while k <= n:
        print(k)
        V = orthogonal(v[0:k, :])
        for j in range(0, k-1):
            u = np.dot(v[k - 1, :], V[j, :]) / (np.linalg.norm(V[j, :]) ** 2)
            v[k - 1, :] = v[k - 1, :] - np.round(u) * v[j, :]
        u = np.dot(v[k - 1, :], V[k - 2, :]) / (np.linalg.norm(V[k - 2, :]) ** 2)
        if np.linalg.norm(V[k - 1, :]) ** 2 >= (3 / 4 - (u ** 2)) * (np.linalg.norm(V[k - 2, :]) ** 2):
            k += 1
        else:
            v[[k-2,k-1],:] = v[[k-1,k-2],:]  #注意在同一个矩阵中交换向量的写法
            k = max(k - 1, 2)
    return v


def LLL(v):
    a = lll(v)
    b = lll(a)
    while a.all() != b.all():  
        a = b
        b = lll(b)
    return b


M = np.array([[19, 2, 32, 46, 3, 33], [15, 42, 11, 0, 3, 24], [43, 15, 0, 24, 4, 16], [20, 44, 44, 0, 18, 15],
              [0, 48, 35, 16, 31, 31], [48, 33, 32, 9, 1, 29]], dtype=np.float64)

r1 = LLL(M)
print(r1)
# print(random_basis(200,3,0.8))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值