矩阵
合同
正定矩阵
线性变换
- x与y的协方差符号决定了x与y的相关性,且协方差绝对值越大,其相关关系越明显。而x与y的方差大小决定了数据在x和y方向上的分散程度
- 协方差代表了不同维度之间的相关关系,如果说某些维度之间没有相关关系,则协方差为0
- 白数据:数据协方差矩阵为单位阵时,该组数据被称为白数据
协方差矩阵的线性变换
M
=
T
D
M=TD
M=TD
D
:
D:
D:表示白数据
M
:
M:
M:表示最终数据
T
=
R
S
T=RS
T=RS
T
T
T为线性变换矩阵,
R
R
R是旋转变换矩阵,
S
S
S是缩放变换矩阵
变换可以分解为旋转变换和缩放变换
举例
将数据旋转0度,而x轴方向扩大3倍,y轴方向大小不变。
协方差及协方差矩阵
协方差
协方差矩阵
协方差矩阵
Σ
\Sigma
Σ是一个实对称矩阵,最主要的性质就是可以正交对角化
正交对角化:存在一个正交矩阵
U
U
U,使得:
Σ
=
Q
T
D
Q
\Sigma = Q^TDQ
Σ=QTDQ
其中Q为标准正交基矩阵,D为对角矩阵。
作为半正定矩阵,我们可以对协方差矩阵进行Cholesky分解
Cholesky分解