【矩阵与线性变换及协方差矩阵】

矩阵

合同

在这里插入图片描述

正定矩阵

在这里插入图片描述
在这里插入图片描述

线性变换

协方差矩阵

  • x与y的协方差符号决定了x与y的相关性,且协方差绝对值越大,其相关关系越明显。而x与y的方差大小决定了数据在x和y方向上的分散程度
  • 协方差代表了不同维度之间的相关关系,如果说某些维度之间没有相关关系,则协方差为0
  • 白数据:数据协方差矩阵为单位阵时,该组数据被称为白数据
    在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

协方差矩阵的线性变换

M = T D M=TD M=TD
D : D: D:表示白数据
M : M: M:表示最终数据
T = R S T=RS T=RS
T T T为线性变换矩阵, R R R是旋转变换矩阵, S S S是缩放变换矩阵
变换可以分解为旋转变换和缩放变换
在这里插入图片描述

举例

将数据旋转0度,而x轴方向扩大3倍,y轴方向大小不变。
在这里插入图片描述
在这里插入图片描述

协方差及协方差矩阵

协方差

在这里插入图片描述

协方差矩阵

在这里插入图片描述
协方差矩阵 Σ \Sigma Σ是一个实对称矩阵,最主要的性质就是可以正交对角化
正交对角化:存在一个正交矩阵 U U U,使得:
Σ = Q T D Q \Sigma = Q^TDQ Σ=QTDQ
其中Q为标准正交基矩阵,D为对角矩阵。
作为半正定矩阵,我们可以对协方差矩阵进行Cholesky分解
Cholesky分解
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值