随机森林

随机森林可以说是决策树的加强提升。
随机森林属于集成学习(Ensemble Learning)中的bagging算法。在集成学习中,主要分为bagging算法和boosting算法。
Bagging(套袋法)
bagging的算法过程如下:

从原始样本集中使用Bootstraping方法随机抽取n个训练样本,共进行k轮抽取,得到k个训练集。(k个训练集之间相互独立,元素可以有重复)
对于k个训练集,我们训练k个模型(这k个模型可以根据具体问题而定,比如决策树,knn等)
对于分类问题:由投票表决产生分类结果;对于回归问题:由k个模型预测结果的均值作为最后预测结果。(所有模型的重要性相同)
Boosting(提升法)
boosting的算法过程如下:

对于训练集中的每个样本建立权值wi,表示对每个样本的关注度。当某个样本被误分类的概率很高时,需要加大对该样本的权值。
进行迭代的过程中,每一步迭代都是一个弱分类器。我们需要用某种策略将其组合,作为最终模型。(例如AdaBoost给每个弱分类器一个权值,将其线性组合最为最终分类器。误差越小的弱分类器,权值越大)
Bagging,Boosting的主要区别
样本选择上:Bagging采用的是Bootstrap随机有放回抽样;而Boosting每一轮的训练集是不变的,改变的只是每一个样本的权重。
样本权重:Bagging使用的是均匀取样,每个样本权重相等;Boosting根据错误率调整样本权重,错误率越大的样本权重越大。
预测函数:Bagging所有的预测函数的权重相等;Boosting中误差越小的预测函数其权重越大。
并行计算:Bagging各个预测函数可以并行生成;Boosting各个预测函数必须按顺序迭代生成。
下面是将决策树与这些算法框架进行结合所得到的新的算法:

1)Bagging + 决策树 = 随机森林

2)AdaBoost + 决策树 = 提升树

3)Gradient Boosting + 决策树 = GBDT

随机森林是一种重要的基于Bagging的集成学习方法,可以用来做分类、回归等问题。

随机森林有许多优点:

具有极高的准确率
随机性的引入,使得随机森林不容易过拟合
随机性的引入,使得随机森林有很好的抗噪声能力
能处理很高维度的数据,并且不用做特征选择
既能处理离散型数据,也能处理连续型数据,数据集无需规范化
训练速度快,可以得到变量重要性排序
容易实现并行化
随机森林的缺点:

当随机森林中的决策树个数很多时,训练时需要的空间和时间会较大
随机森林模型还有许多不好解释的地方,有点算个黑盒模型
与上面介绍的Bagging过程相似,随机森林的构建过程大致如下:

从原始训练集中使用Bootstraping方法随机有放回采样选出m个样本,共进行n_tree次采样,生成n_tree个训练集
对于n_tree个训练集,我们分别训练n_tree个决策树模型
对于单个决策树模型,假设训练样本特征的个数为n,那么每次分裂时根据信息增益/信息增益比/基尼指数选择最好的特征进行分裂
每棵树都一直这样分裂下去,直到该节点的所有训练样例都属于同一类。在决策树的分裂过程中不需要剪枝
将生成的多棵决策树组成随机森林。对于分类问题,按多棵树分类器投票决定最终分类结果;对于回归问题,由多棵树预测值的均值决定最终预测结果

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值