《实战》基于电商领域的词性提取及其决策树模型建模

一、数据预处理

本次的实现目标
1、利用文本挖掘技术,对碎片化、非结构化的电商网站评论数据进行清洗与处理,转化为结构化数据。
2、参考知网发布的情感分析用词语集,统计评论数据的正负情感指数,然后进行情感分析,通过词云图直观查看正负评论的关键词。
3、比较“机器挖掘的正负情感”与“人工打标签的正负情感”。
4、采用LDA主题模型提取评论关键信息,以了解用户的需求、意见、购买原因、产品的优缺点等。

导入所需要的工具包

import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

驭风少年君

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值