机器学习
文章平均质量分 80
机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。
它是人工智能的核心,是使计算机具有智能的根本途径
dew_142857
学而不思则罔,思而不学则殆
展开
-
L1正则化优化问题的一种求解方法
所谓的L1正则化优化问题,就是如下带L1L_1L1正则化的最小化问题:因为L1L_1L1正则项的不可微性,使得利用梯度相关方法直接求解上面的优化问题有困难。下面介绍的方法,是把这个L1L_1L1优化问题,变换为多个L2L_2L2正则化优化问题逐步迭代求解。把不等式∣ab∣≤12(a2+b2)|ab| \leq \frac12 \left( a^2 + b^2 \right)∣ab∣≤21(a2+b2)应用到θ\thetaθ向量中的每个元素:就有:其中C≜diag(c)\mathbf{C}\转载 2021-09-03 17:06:07 · 1728 阅读 · 0 评论 -
吴恩达机器学习——支持向量机SVM
SVM:大间距分类器Large Margin IntuitionSVM hypothesis:minC∑i=1m[y(i)cost1(θTx(i))+(1−y(i))cost0(θTx(i))]+12∑i=1nθj2\min C\sum^m_{i=1}[y^{(i)}cost_1(\theta ^Tx^{(i)})+(1-y^{(i)})cost_0(\theta ^Tx^{(i)})]+\frac{1}{2}\sum^n_{i=1}\theta^2_jminCi=1∑m[y(i)cost1(原创 2021-06-20 10:47:48 · 123 阅读 · 0 评论 -
吴恩达机器学习——算法对数据的要求
问:什么情况下,数据越多算法性能越好?答:A learning algorithm with many paramenters.many parameters/特征值有足够的信息量 ⟹ \implies⟹low biasa very large training set(more than parameters) ⟹ \implies⟹low variance∵\because∵ 训练集比参数多∴\therefore∴ 算法不会过拟合∴Jtrain(θ)≈Jtest(θ)\theref原创 2021-05-19 11:08:20 · 432 阅读 · 0 评论 -
吴恩达机器学习——数值评价指标
Numerical Evaluation用数值评价指标来估计算法的执行结果 可以看出学习算法的效果。在自然语言处理中,可用stemming software(词干提取软件)实现;在搜索引擎中搜Porter Stemmer这种软件进行词干提取。但它们都只处理单词的前几个字母。可以使用交叉验证(not error analysis)在使用词干提取和不使用词干提取条件下分别看看其结果。Need numerical evaluation(e.g.,cross validation error) of algo原创 2021-05-18 11:30:25 · 261 阅读 · 0 评论 -
吴恩达机器学习——算法执行&误差分析
Building a spam classierxxx = features of email, yyy = spam(1) or not spam (0).Features xxx: Choose 100 words indicative of spam/not spam.如何提高精确度?更多样本(收集更多数据)e.g. “honeypot” project更加复杂特征值(发件人信息(from email header)、邮件正文(e.g.感叹号))用复杂算法检测错误拼写1Recomm原创 2021-05-17 11:31:37 · 242 阅读 · 0 评论 -
神经网络(1)——实现逻辑运算
通过赋予神经网络不同的权值可以实现逻辑运算。AND与:有0出0,无0出1。则hΘ=g(−30+20x1+20x2)h_\Theta=g(-30+20x_1+20x_2)hΘ=g(−30+20x1+20x2),x1x_1x1x2x_2x2hΘh_\ThetahΘ00g(−30)≈0g(-30)\approx0g(−30)≈001g(−10)≈0g(-10)\approx0g(−10)≈010g(−10)≈0g(-10)\approx0g(−10原创 2021-01-05 16:20:31 · 3613 阅读 · 2 评论 -
吴恩达机器学习之神经网络篇——随机初始化
随机初始化对于梯度下降/高级优化算法,必须初始化Θ\ThetaΘ.optTheta = fminunc(@costFunction, initialTheta, options)实现fminunc,要设置initialTheta.Consider gradient descent设置 initialTheta = zeros(n,1)?phenomenon: 每次更新后,两个隐藏单元依然以相同的函数作为输入来计算。1result: 只能学习一种特征。Random initializati原创 2020-12-23 19:55:03 · 643 阅读 · 0 评论 -
吴恩达机器学习神经网络篇——梯度检测
梯度检测目的验证BP的正确性(代码能够正确计算出代价函数J的导数)。因为BP容易出现bug,此时神经网络的误差会比无bug高出一个量级,且此时无法知道是由bug引起的。% Numerical estimation of gradientsfor i = 1:n, thetaPlus = theta; thetaPlus(i) = thetaPlus(i) + EPSILON; thetaMinus = theta; thetaMinus(i) = thetaMinus(i) - EPSILO原创 2020-12-20 22:01:44 · 412 阅读 · 1 评论 -
吴恩达机器学习神经网络篇——矩阵与向量之间的转换
Advanced optimizationfunction [jVal, gradient] = costFunction(theta)...optTheta = fminunc(@costFunction, initialTheta, options)注:gradient∈Rn+1\in{R^{n+1}}∈Rn+1,theta,initialTheta∈Rn+1\in{R^{n+1}}∈Rn+1均为向量。例如:Neural Network(L=4):Θ(1),Θ(2),Θ(3)\Thet原创 2020-12-16 21:04:53 · 647 阅读 · 0 评论