矩阵论
文章平均质量分 71
矩阵的本质是运动的描述
dew_142857
学而不思则罔,思而不学则殆
展开
-
矩阵论——正定矩阵
xTAxx^TAxxTAx 正定⟺p=n\Longleftrightarrow p=n⟺p=n1⟺A≃E\Longleftrightarrow A\simeq E⟺A≃E⟺A\Longleftrightarrow A⟺A 的特征值全大于0⟺p=n\Longleftrightarrow p=n⟺p=n顺序主子式全大于0p表示正惯性指数,n表示负惯性指数 ↩︎...原创 2022-02-21 21:05:56 · 399 阅读 · 0 评论 -
矩阵论——特征值和特征向量
引言对于y=f(x)y=f(x)y=f(x),即x→fyx\xrightarrow{f}yxfy,类似地 x→AAxx\xrightarrow{A}AxxAAx,而特征值(Eigenvalue)与特征向量(Eigenvectors)研究的正是 xxx与AxAxAx方向相同 的情况。特征向量和特征向量使得AxAxAx平行于xxx的特殊向量就是特征向量,即Ax=λxAx=\lambda xAx=λx.特殊矩阵的特征值若A是奇异矩阵,λ\lambdaλ=0是其特征值。若P是投影矩阵,则对于xxx原创 2021-10-28 07:53:55 · 931 阅读 · 0 评论 -
从SVD到PCA——奇妙的数学游戏
方阵的特征值当一个矩阵与一个向量相乘,究竟发生了什么?Ax=bAx=bAx=b定义如下的 A 与 x:A=[2102]x=[x1x2]A=\begin{bmatrix}2&1\\0&2\end{bmatrix}\\\\x=\begin{bmatrix}x_1\\x_2\end{bmatrix}A=[2012]x=[x1x2]求得b=[2x1+x22x2]b=\begin{bmatrix}2x_1+x_2\\2x_2\end{bmatrix}b=[2x1转载 2021-10-16 10:55:44 · 194 阅读 · 0 评论 -
矩阵的范数
矩阵的核范数∥A∥∗\lVert A\rVert_*∥A∥∗:矩阵的奇异值之和。∥A∥∗\lVert A\rVert_*∥A∥∗可以用来表示低秩(因为最小化核范数,相当于最小化矩阵的秩——低秩。JZhfs=sum(svd(A));矩阵的F范数\L2范数∥A∥F\lVert A\rVert_F∥A∥F:矩阵的各个元素平方之和再开平方根。优点:∥A∥F\lVert A\rVert_F∥A∥F是一个凸函数,可以求导求解,易于计算。JZFfs=norm(A,'fro');...转载 2021-09-03 20:01:48 · 6955 阅读 · 0 评论 -
矩阵论小知识
RIP(Restricted Isometry Property,有限等距性质)保证了观测矩阵不会把两个不同的K稀疏信号映射到同一个集合中(保证原空间到稀疏空间的一一映射关系),要求从观测矩阵中抽取的每M个列向量构成的矩阵是非奇异的。...原创 2021-07-13 13:35:44 · 146 阅读 · 0 评论 -
矩阵论——应用篇
dimN(AT)=m−r\dim N(A^T)=m-rdimN(AT)=m−r#Loops = #Edges - (#Nodes-1)欧拉公式:#Nodes - #Edges + #Loops = 1原创 2021-06-01 19:18:13 · 1725 阅读 · 0 评论 -
矩阵论——正交矩阵&Gram-Schimidt正交化
标准正交基:qiTqj={0if i /=j1if i=jq_i^Tq_j=\begin{cases}0&\text{if }\;i \mathrlap{\,/}{=}j\\1&\text{if }\;i=j\end{cases}qiTqj={01if i/=jif i=j优点:1. 计算方便 2. 不会上溢,不会下溢 3.所有方程使用标准正交基后,都变得非常简单。对于标准正交列向量组成的矩阵Q=[q1,q2,.原创 2021-05-28 17:03:07 · 816 阅读 · 0 评论 -
矩阵论——空间投影及其应用
二维空间投影如图所示,对于向量b\textbf{\textit{b}}b,它在向量a\textit{\textbf{a}}a上的投影p=xa\textit{\textbf{p}}=x\textit{\textbf{a}}p=xa,二者误差e=b−p=b−xa\textit{\textbf{e}}=\textbf{\textit{b}}-\textit{\textbf{p}}=\textbf{\textit{b}}-x\textit{\textbf{a}}e=b−p=b−xa。(注:图中向量均为列向量.)原创 2021-05-24 17:43:26 · 3017 阅读 · 1 评论 -
矩阵论——正交向量
向量正交子空间正交基正交四个基本子空间的关系行空间与零空间正交,列空间与ATA^TAT的零空间正交。零向量和任意向量正交。原创 2021-05-19 09:12:36 · 1448 阅读 · 0 评论 -
矩阵论——矩阵的性质
∀\forall∀秩1矩阵Am×nA_{m\times n}Am×n,有A=uvTA=uv^TA=uvT,其中u、v分别为m维、n维列向量for example,A=[1452810]=[12][145]A=\begin{bmatrix}1&4&5\\2&8&10\end{bmatrix}=\begin{bmatrix}1\\2\end{bmatrix}\begin{bmatrix}1&4&5\end{bmatrix}A=[1248510]=原创 2021-05-18 20:50:26 · 528 阅读 · 0 评论 -
矩阵论——向量空间
向量空间:满足运算封闭性的一些向量。运算封闭性{加法v+w数乘cv→线性组合cv+dw封闭运算封闭性\begin{cases}加法v+w\\数乘cv\end{cases}\to线性组合cv+dw封闭运算封闭性{加法v+w数乘cv→线性组合cv+dw封闭R3R^3R3中的subspace:零向量经过原点的直线L经过原点的面P任意两个子空间的交集仍是向量空间,任意两个子空间的并集不一定是向量空间。A的列空间由所有列的线性组合构成。...原创 2021-05-11 16:35:28 · 1787 阅读 · 0 评论 -
矩阵论——逆、转置、置换
一个 n 维方阵分为可逆/非奇异矩阵(inversible/non-singular matrix)和不可逆/奇异矩阵(non-inversible/singular matrix).一个可逆矩阵 A 满足:A−1^{-1}−1A = A A−1^{-1}−1 = E.Singular Matrix Case1.线性组合/column picture矩阵其中一列未做贡献 / 矩阵各列通过线性组合变成0.for example,A = [1326]\begin{bmatrix}1&3\\2原创 2021-04-26 10:59:03 · 1728 阅读 · 0 评论 -
矩阵论——矩阵乘法
矩阵乘法:左行右列矩阵×\times×向量:矩阵列的线性组合matrix ×\times× column = column向量 ×\times× 矩阵:矩阵行的线性组合row ×\times× matrix = row原创 2021-04-17 13:34:12 · 447 阅读 · 1 评论 -
矩阵论——row picture&column picture
对于一个n equations, n unknowns的方程组,Ax=b。row picture:绘制每行对应的函数图像,找到它们的交点,即方程的解column picture:即linear combination,找到每列向量,通过线性组合使其结果等于最右侧的向量。Example:2x-y=0-x+2y=3row picture:column picture:x[2,−1]T+y[−1,2]T=[0,3]Tx[2,-1]^T+y[-1,2]^T=[0,3]^Tx[2,−1]T+y[−1原创 2021-04-14 11:30:32 · 2516 阅读 · 1 评论 -
矩阵论——奇异值分解SVD
A=UΣVTA=U\Sigma V^TA=UΣVT其中,A为任意matrix,分解的因子U、Σ\SigmaΣ、V分别是正交、对角、正交matrix。记Σ=Λ(σ1,σ2,...,σn)\Sigma=\Lambda(\sigma_1,\sigma_2,...,\sigma_n)Σ=Λ(σ1,σ2,...,σn)。U——列空间中的基V——行空间中的基This is the final and best factorization of a matrix.引理1:对于一个对称(半)正定矩阵A,其特原创 2021-04-12 13:40:53 · 212 阅读 · 0 评论