Mysql的索引机制

索引的出现是为了提高查询效率,Mysql索引是B+tree

目录

一、索引的常见数据结构
二、InnoDB的索引模型
三、索引的维护
四、名词与相关概念解释


一、索引的常见数据结构

  • 哈希表:
    以键值对存储数据的结构,缺点会发生hash突出,后面跟着的链表和数组,使得哈希表结构适用于等值查询的场景。

  • 二叉树:
    二叉树是搜索效率最高的,时间复杂度是 O(log(N)),为了维持 O(log(N)) 的查询复杂度,得保持这颗树是一颗平衡二叉树。

  • B+树:
    但索引不止存在内存中,还要写到磁盘上。二叉树的深度比较深,读取磁盘需要时间,所有引出了N叉树降低磁盘访问开销。

返回顶部目录


二、InnoDB的索引模型

  • InnoDB 使用了 B+ 树索引模型,所以数据都是存储在 B+ 树中的

  • 每一个索引在 InnoDB 里面对应一棵 B+ 树

  • 假设,我们有一个主键列为 ID 的表,表中有字段 value,并且在 value上有索引。

    mysql> create table T
    (id int primary key,
     value int not null, 
     name varchar(16),
     index (value)
     )engine=InnoDB;
    

    表中 R1~R5 的 (ID,value) 值分别为 (100,1)、(200,2)、(300,3)、(500,5) 和 (600,6),两棵树的示例示意图如下。
    在这里插入图片描述

    • 根据叶子节点的内容,索引类型分为主键索引和非主键索引。

    • 主键索引的叶子节点存的是整行数据。在 InnoDB 里,主键索引也被称为聚簇索引(clustered index)。

    • 非主键索引的叶子节点内容是主键的值。在 InnoDB 里,非主键索引也被称为二级索引(secondary index)。

    • 例子:主键索引的叶子节点存的是整行数据。在 InnoDB 里,主键索引也被称为聚簇索引(clustered index)。非主键索引的叶子节点内容是主键的值。在 InnoDB 里,非主键索引也被称为二级索引(secondary index)。根据上面的索引结构说明,我们来讨论一个问题:基于主键索引和普通索引的查询有什么区别?如果语句是 select * from T where ID=500,即主键查询方式,则只需要搜索 ID 这棵 B+ 树;如果语句是 select * from T where value=5,即普通索引查询方式,则需要先搜索 value 索引树,得到 ID 的值为 500,再到 ID 索引树搜索一次。这个过程称为回表。也就是说,基于非主键索引的查询需要多扫描一棵索引树。因此,我们在应用中应该尽量使用主键查询。

返回顶部目录


三、索引的维护

  • 在上面的表中,如果新插入的行ID值为400,需要逻辑上挪动后面的数据,空出位置。
  • 如果那个数据页数据满了,根据 B+ 树的算法,这时候需要申请一个新的数据页,然后挪动部分数据过去。这个过程称为页分裂。在这种情况下,性能自然会受影响。
  • 基于上面的问题,我们在很多建表规范中,都有这样的描述,建表需要一定要有自增主键。
    • 每次插入一条新记录,都是追加操作,都不涉及到挪动其他记录,也不会触发叶子节点的分裂。
    • 而有业务逻辑的字段做主键,则往往不容易保证有序插入,这样写数据成本相对较高。
  • 由于每个非主键索引的叶子节点上都是主键的值。如果用身份证号等做主键,那么每个二级索引的叶子节点占用约 20 个字节,而如果用整型做主键,则只要 4 个字节,如果是长整型(bigint)则是 8 个字节。主键长度越小,普通索引的叶子节点就越小,普通索引占用的空间也就越小。
  • 业务字段直接做主键的(典型的kv场景),可以避免每次查询需要回表搜索两棵树:
    • 只有一个索引;
    • 该索引必须是唯一索引。

返回顶部目录


名词与相关概念解释

  • 为什么数据库存储使用b+树 而不是二叉树?

    • 因为二叉树树高过高,每次查询都需要访问过多节点,即访问数据块过多,而从磁盘随机读取数据块过于耗时。
    • 一页就是B-tree上的一个节点,因为根节点总是在内存,所以查找一个值最多进行树高h-1次磁盘io就能找到。
    • 虽然平衡二叉树时间复杂度低,但树深度可能较深,每一个层级的访问都伴随着磁盘的访问。
  • 为什么 “N 叉”树中的“N”取决于数据块的大小?

    • 一个数据块假如有500 字节,一个子节点的索引地址大小是10个字节,那么这个节点就可以存储50个孩子节点的索引,这个树就是50叉树,所以 N取决于数据块的大小。
  • 为什么 InnoDB整数字段索引的b+树最大能维持大约1200叉树

    • MySql默认一个节点的长度为16K,一个整数(bigint)字段索引的长度为 8B,另外每个索引还跟着6B的指向其子树的指针;所以16K/14B ≈ 1170
  • 比较新的数据结构

    • redis 中使用到跳表,hbase memstore 和flink中的rocksdb使用到LSM树
  • 关于 InnoDB 的表结构:

    • 1.在 InnoDB 中,每一张表其实就是多个 B+ 树,即一个主键索引树和多个非主键索引树。 2.执行查询的效率,使用主键索引 > 使用非主键索引 > 不使用索引。 3.如果不使用索引进行查询,则从主索引 B+ 树的叶子节点进行遍历。
  • 回表:

    • 主键索引的b+树的叶子节点存储的是具体的行数据,非叶子节点存储的是主键的值。叶子节点之间通过链表连接 非主键索引的叶子节点存储的是主键的值,所以通过非主键索引查询数据时,先找到主键,再去主键索引上根据主键找到具体的行数据
  • 根据具体需求选择合适的结构

    • 二叉树也会畸变成单链表,所以才有了AVL树通过旋转的方式来维持树的平衡,但后来发现大量的旋转实在是性能不好,所以有了红黑树。都是二叉树,只是约束条件不一样。没有最好的方法只有更适合的方法,要维持某一方面的优势需要牺牲另一方面的优势,就看如何选择了。
MySQL索引机制和原理是MySQL数据库中非常重要的部分,它对于提高查询性能和加速数据检索非常关键。下面是MySQL索引机制和原理: 1. 索引的作用:索引是一种数据结构,用于加速数据的查找和访问。它可以帮助数据库快速定位到需要查询的数据,减少全表扫描的开销。 2. B-Tree索引MySQL使用B-Tree(平衡树)数据结构来实现索引。B-Tree索引是一种多级树结构,具有平衡性和高效性能。在B-Tree索引中,每个节点存储多个键值对,并按照键的顺序进行排序。 3. 索引类型:MySQL支持多种索引类型,包括主键索引、唯一索引、普通索引和全文索引等。主键索引是一种唯一性索引,用于唯一标识表中的记录;唯一索引用于确保某列或多列的值唯一;普通索引用于提高查询性能;全文索引用于全文搜索。 4. 索引选择:在创建索引时,需要根据实际需求选择合适的列进行索引。通常选择经常用于查询、范围查询或连接操作的列作为索引列。 5. 索引优化:索引的优化是提高查询性能的重要手段。可以通过合理设计索引、避免过多的索引、定期更新统计信息、避免在索引列上进行函数操作等方式来优化索引。 6. 索引失效:索引的失效指的是查询不能有效地使用索引进行加速,而需要进行全表扫描。常见的索引失效情况包括使用了函数操作、模糊查询时以%开头、对索引列进行类型转换等。 总之,MySQL索引机制和原理是数据库中重要的概念,合理使用和优化索引可以大大提高数据库的查询性能和数据检索速度。
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

希境

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值