1、我这个人挺磨磨蹭蹭的,明明周末要写的,非拖到了工作日,写写停停。看到了徐涛老师的一句话,别人能娓娓而谈、而你哪怕脑袋里想了很多遍却还是感觉背书,不要着急,慢慢改变。你不用变得很外向,内向也挺好的,但是需要你站出来的时候,一定要勇敢。希望能改变一下自己,在需要勇敢的时候,能够娓娓而谈。
2、 周六看完了刘同的《谁的青春不迷茫》,30岁的人生开始有点看不懂了,但也更加认识到那些牛人和普通人其实也没有什么不一样,可能更加通透,活出自己。
3、 周日去学烘焙。
小时候就爱做菜(瞎搞),以前的梦想就是当一名大厨,去人民大会堂做菜(哈哈哈,受小时候老师影响,经常举例说当地职校的大厨都做到人民大会堂去了)。做了肠仔面包、核桃酥,懂了一些原理。
原来面包做的发白、保存期延长,是用了面包改良剂(自己吃就尽量别放了)
原来发酵面包时,发酵到1.5–2倍就可以了(而不是时间);酵母菌发酵温度在38度,50度就失活了,低温可以保存酵母;夏天用冰水,冬天用温水活面
原来面粉的区分方法,高、中、底筋面粉区分是根据蛋白质含量
原来蓬松的方法还挺多的,1、物理蓬松,如淀粉糊,泡芙;2、微生物蓬松,如酵母菌;3、化学蓬松,如小苏打
学废了好多、、、
4、 被抓取跳舞,希望能减10斤,早上30分钟的减脂坚持了2星期,感觉还行。希望能坚持下去哦。
5、 最近发生的事情,让我有点相信非科学的事情了、、
6、JT、JM同学说我的想法是挺厉害的,执行力也行,就有时候妄自菲薄,可能是遇见了更厉害的人,对自己太苛责了;平时要开开心心的,别给自己太大压力,做个开心的吃货。
各位领导同事:
大家下午好!我是来自YE的江爽。
我今天发表的课题是外观不良坐标别集中性异常感知改善。
图中展示的是工程中异常感知项目及方法。
OLB不良、破碎以及检查bin2我们通过活用各种感知系统,真性收率以及bin2率控制在合理范围内
且感知时间能达到10分钟级别。
但对于外观不良,现有的bin2达到30%以上,但实际不良率不到1%,假性检出多,管理难度大,真性流出风险大,感知时间长,极易产生品质风险
为了减少外观不良的风险,我们在原有的bin2监控的基准上,增加坐标别异常感知
1、首先vision设备上传异常坐标信息
2、然后dbscan算法对这些产品异常坐标进行聚类计算
3、对于计算出的异常数据,及时锁定设备,然后反馈给工程,进行改善
这个算法有两个核心:点之间的距离以及聚集的数量,当他们大于设定基准时,就表示这里是异常的
当点之前距离小于设定值且聚集数量大于我们设定值时,表示这是个核心点,如图红色这些
在核心点附近的点,我们称为边缘点,如上图黄色这些。远离核心点和边缘点的点,我们称为噪声点,如上蓝色点
这些噪声点,在后续的计算中,我们首先会排除出去
dbscan算法的详细步骤如下:
第一步,先选取点之间的距离以及聚集的数量作为基准,然后初始化他们
第二步,每个点我们判定核心点或者边界点以及噪声点
第三步,核心点进行聚集,噪声点丢弃。循环上面的点位,直到所有扫描完成
如图我们得到了2个聚集,表示这里是有风险的,我们需要及时向设备发起预警,反馈工程
右图我们统计的是11月份SVI的适用结果
我们看到真性检出率从30%提高到了70%,过检从50%降低到了20%。感知时间也从原来的3H降低到了10min
向后,像SVI背面、以及ICC/AOT等外观工程也增加不良坐标位置集中性管理