【027】2358. 分组的最大数量【脑筋急转弯】

本文介绍了一种通过解一元二次方程来确定学生按成绩和人数递增分组的最大数量的方法。该算法应用于给定的成绩数组,通过数学运算快速得出结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

给你一个正整数数组 grades ,表示大学中一些学生的成绩。你打算将 所有 学生分为一些 有序 的非空分组,其中分组间的顺序满足以下全部条件:
第 i 个分组中的学生总成绩 小于 第 (i + 1) 个分组中的学生总成绩,对所有组均成立(除了最后一组)。
第 i 个分组中的学生总数 小于 第 (i + 1) 个分组中的学生总数,对所有组均成立(除了最后一组)。
返回可以形成的 最大 组数。

https://leetcode.cn/problems/maximum-number-of-groups-entering-a-competition/description/

  1. 解一元二次方程
  2. 开平方:sqrt (double a);通用次方:pow (double a,double b)
/*
 * Copyright (c) Huawei Technologies Co., Ltd. 2023-2023. All rights reserved.
 */

package com.huawei.prac;

import java.util.HashMap;
import java.util.Map;

class SolutionRd {
    static Map<Long, Integer> mem = new HashMap<>();

    public static void main(String[] args) {
        int[] grades = {10, 6, 12, 7, 3, 5};
        System.out.println(maximumGroups(grades)); // 3
    }

    /**
     * 2358. 分组的最大数量[脑筋急转弯]
     * 解一元二次方程
     * sqrt (double a) 开平方
     * pow (double a,double b)
     *
     * @param grades
     * @return
     */
    public static int maximumGroups(int[] grades) {
        return (int) (Math.sqrt((double) grades.length * 2 + (double) 1 / 4) - (double) 1 / 2);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值