【pytorch】Pytorch训练好的模型转torchscript

文章介绍了如何将基于PyTorch的nn.Module模型转换为TorchScript,以便在高性能环境中运行,如C++。通过torch.jit.trace函数对模型进行追踪,然后保存转换后的模型。加载预训练权重,对模型进行评估,并使用固定输入维度的示例数据保存trace后的脚本模块。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

TorchScript,它是PyTorch模型(子类nn.Module)的中间表示,可以在高性能环境(例如C ++)中运行。利用torch.jit.trace()函数

import torch
import torchvision
model=get_model #获得你的模型
model.load_state_dict(torch.load('./best.pth', map_location='cpu'))#加载你训练好的模型权重
model  = model.eval()#验证
dummy_input = torch.randn(1,3,299,299)#固定的输入维度
traced_script_module = torch.jit.trace(model, dummy_input)#
traced_script_module.save('./tt.pt')#保存路径

ps:如果你训练的时候是模型和参数保存在一起了直接model=torch.load('.pth')就可以了,上面代码演示的权重单独保存的记载方式

PyTorch模型换为TorchScript的步骤如下: 1. 定义和训练PyTorch模型:首先,您需要定义和训练一个PyTorch模型,这可以通过使用标准的PyTorch代码来完成。 2. 导出PyTorch模型:然后,您需要将PyTorch模型导出为TorchScript格式。这可以通过使用PyTorch的torch.jit模块中的trace函数来完成。trace函数接受一个输入样本并生成一个TorchScript模块。 3. 运行TorchScript模型:一旦您导出了TorchScript模型,您可以像普通的Python模块一样使用它。您可以加载模块并使用其forward方法来运行模型。此外,TorchScript模块还可以与C++和Java等其他语言一起使用。 下面是一个简单的示例代码,演示了如何将PyTorch模型换为TorchScript: ``` import torch import torchvision # 定义和训练PyTorch模型 model = torchvision.models.resnet18() example_input = torch.rand(1, 3, 224, 224) traced_script_module = torch.jit.trace(model, example_input) # 导出PyTorch模型TorchScript模块 traced_script_module.save("resnet18.pt") # 加载TorchScript模块并运行模型 loaded_script_module = torch.jit.load("resnet18.pt") output = loaded_script_module(example_input) print(output) ``` 在这个示例代码中,我们首先定义了一个ResNet-18模型,并使用一个随机的输入样本来跟踪模型。然后,我们将跟踪后的模型保存为TorchScript格式。最后,我们加载了TorchScript模块并使用它来运行模型
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值