逻辑回归(Logistic Regression)

逻辑回归是一种处理分类问题的模型,适用于二分类或多分类问题。本文介绍了逻辑回归的基本概念,包括Sigmoid函数和LogisticRegression模型在Scikit-learn中的使用。模型参数如penalty(正则化)、multi_class(分类方式)和class_weight(类型权重)等对模型性能有重要影响。优化算法如liblinear、lbfgs和sag等则与正则化类型和样本量有关。
摘要由CSDN通过智能技术生成
                       
               

一. 逻辑回归

在前面讲述的回归模型中,处理的因变量都是数值型区间变量,建立的模型描述是因变量的期望与自变量之间的线性关系。比如常见的线性回归模型:


 

而在采用回归模型分析实际问题中,所研究的变量往往不全是区间变量而是顺序变量或属性变量,比如二项分布问题。通过分析年龄、性别、体质指数、平均血压、疾病指数等指标,判断一个人是否换糖尿病,Y=0表示未患病,Y=1表示患病,这里的响应变量是一个两点(0-1)分布变量,它就不能用h函数连续的值来预测因变量Y(只能取0或1)。
总之,线性回归模型通常是处理因变量是连续变量的问题,如果因变量是定性变量,线性回归模型就不再适用了,需采用逻辑回归模型解决。

逻辑回归(Logistic Regression是用于处理因变量为分类变量的回归问题,常见的是二分类或二项分布问题,也可以处理多分类问题,它实际上是属于一种分类方法。
二分类问题的概率与自变量之间的关系图形往往是一个S型曲线,如图所示,采用的Sigmoid函数实现。




PS:如果你觉得这篇文章看起来稍微还有些吃力,或者想要系统地学习人工智能,那么推荐你去看床长人工智能教程。非常棒的大神之作。教程不仅通俗易懂,而且很风趣幽默。点击这里可以查看教程。

这里我们将该函数定义如下:




函数的定义域为全体实数,值域在[0,1]之间,x轴在0点对应的结果为0.5。当x取值足够大的时候,可以看成0或1两类问题,大于0.5可以认为是1类问题,反之是0类问题,而刚好是0.5,则可以划分至0类或1类。对于0-1型变量,y=1的概率分布公式定义如下:



y=0的概率分布公式定义如下:



其离散型随机变量期望值公式如下:



采用线性模型进行分析,其公式变换如下:



而实际应用中,概率p与因变量往往是非线性的,为了解决该类问题,我们引入了logit变换,使得logit(p)与自变量之
间存在线性相关的关系,逻辑回归模型定义如下:



通过推导,概率p变换如下,这与Sigmoid函数相符,也体现了概率p与因变量之间的非线性关系。以0.5为界限,预

测p大于0.5时,我们判断此时y更可能为1,否则y为0。



得到所需的Sigmoid函数后,接下来只需要和前面的线性回归一样,拟合出该式中n个参数θ即可。test17_05.py为绘

制Sigmoid曲线,输出上图所示。


 


  
  
  
  1. import matplotlib.pyplot as plt
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值