构建数据集训练

自定义数据集训练

首先我们使用coco128数据集进行训练,如下图所示在官网下载数据集,可能要用账号注册后才能下载,因此我将数据集和之后需要创建并制作完成的datasets文件夹上传到GitHub上,需要的自取。
在这里插入图片描述

方式1、coco数据集官网
方式2、git获取数据集

可以将git里的datasets文件复制到源码路径处,修改data.yalm里对应文件的文件路径即可可跳过下面的划分数据集,直接进行训练。

1-1 数据集制作
在这里插入图片描述
依次在datasets文件夹中创建若干文件,布局为
在这里插入图片描述
其中ylov8n.yaml文件复制下图路径下的yolov8.yaml即可
在这里插入图片描述
data.yaml里修改对应test、train、valid三个之前创建文件夹的绝对路径
nc为对应coco128.yaml的类别数,复制coco128.yaml的names:类别
最终为结果为
在这里插入图片描述
在对应coco数据集的文件中,先将2个文件删除。分别在images、labels文件夹中的train2017里的图片和标签拷贝(Ctrl+A 全选然后Ctrl+C复制)到和train2017文件名同一级目录,最后删除掉train2017文件夹。
效果如下图
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

1-2 划分数据集
这里借鉴了b站up主奥怪的代码进行python脚本划分数据集,网上大部分数据集划分脚本只能划分.jpg格式的图片,所以使用起来比较坑。
在源代码里创建一个py文件,并输入以下代码

import os
import random
from tqdm import tqdm

# 指定 images 文件夹路径
image_dir = "D:/yolov8/archive/coco128/images" #修改处1 修改对应数据集文件地址  注意路径是'/'  

# 指定 labels 文件夹路径
label_dir = "D:/yolov8/archive/coco128/labels"  #修改处2

# 创建一个空列表来存储有效图片的路径
valid_images = []

# 创建一个空列表来存储有效 label 的路径
valid_labels = []

# 遍历 images 文件夹下的所有图片
for image_name in os.listdir(image_dir):

    # 获取图片的完整路径
    image_path = os.path.join(image_dir, image_name)

    # 获取图片文件的扩展名
    ext = os.path.splitext(image_name)[-1]

    # 根据扩展名替换成对应的 label 文件名
    label_name = image_name.replace(ext, ".txt")

    # 获取对应 label 的完整路径
    label_path = os.path.join(label_dir, label_name)

    # 判断 label 是否存在
    if not os.path.exists(label_path):
        # 删除图片
        os.remove(image_path)
        print("deleted:", image_path)
    else:
        # 将图片路径添加到列表中
        valid_images.append(image_path)
        # 将label路径添加到列表中
        valid_labels.append(label_path)
        # print("valid:", image_path, label_path)

# 遍历每个有效图片路径
for i in tqdm(range(len(valid_images))):
    image_path = valid_images[i]
    label_path = valid_labels[i]

    # 随机生成一个概率
    r = random.random()
    # 判断图片应该移动到哪个文件夹
    # train:valid:test = 7:2:1
    if r < 0.1:
        # 移动到 test 文件夹
        destination = "D:/yolov8/ultralytics/datasets/test"  #修改处3  制作的datasets的文件夹的路径
    elif r < 0.2:
        # 移动到 valid 文件夹
        destination = "D:/yolov8/ultralytics/datasets/valid" #修改处4
    else:
        # 移动到 train 文件夹
        destination = "D:/yolov8/ultralytics/datasets/train" #修改处5

    # 生成目标文件夹中图片的新路径
    image_destination_path = os.path.join(destination, "images", os.path.basename(image_path))

    # 移动图片到目标文件夹
    os.rename(image_path, image_destination_path)

    # 生成目标文件夹中 label 的新路径
    label_destination_path = os.path.join(destination, "labels", os.path.basename(label_path))

    # 移动 label 到目标文件夹
    os.rename(label_path, label_destination_path)

print("valid images:", valid_images)
# 输出有效label路径列表
print("valid labels:", valid_labels)

点击运行后,就可以在dataset文件夹的test、train、valid文件中得到按照一定比例划分的数据集和标签

1-3 数据集训练
在终端处输入训练命令,开始训练

yolo task=detect mode=train model=datasets/yolov8n.yaml data=datasets/data.yaml epochs=100 imgsz=640 resume=True workers=2 

在这里插入图片描述
在这里插入图片描述
当我们选择resume=True时,可以在终端进行Ctrl+c暂停
在这里插入图片描述
当我们需要继续训练时,在run文件夹下找到最后一次训练的权重last.pt复制路径
在这里插入图片描述
在这里插入图片描述
输入断训指令后,可继续训练

yolo task=detect mode=train model=runs/detect/train/weights/last.pt epochs=100 imgsz=640 resume=True workers=2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值