Few-shot Learning:知识点

目标: 让机器自己学会学习,学会理解和判断事物的异同(如,区分两张图片内是相同的东西还是不同的东西,不是识别出是什么东西)

Pretraining

前景知识

  • C o s i n e   S i m i l a r i t y Cosine \ Similarity Cosine Similarity

作用: 衡量两个向量之间的相似度

在这里插入图片描述

在这里插入图片描述

  • S o f t m a x Softmax Softmax:

在这里插入图片描述
在这里插入图片描述

  • S o f t m a x   C l s s i f i e r Softmax \ Clssifier Softmax Clssifier
    在这里插入图片描述

具体过程

  1. 利用深度神经网络来提取特征,该网络需要被预训练 —— 结构和预训练方法会对最终结果产生影响
  2. 拿预训练的网络对 S u p p o r t   S e t Support \ Set Support Set 中的各任务(各类别, K   W a y K \ Way K Way)提取特征—— 每个任务中的各元素分别提取特征( N   S h o t N \ Shot N Shot),再合起来做均值,再做归一化,成为该任务(类别)的表征
    在这里插入图片描述
  3. Q u e r y Query Query 做分类
    在这里插入图片描述
    在这里插入图片描述

F i n e   T u n i n g Fine \ Tuning Fine Tuning

背景 P r e t r a i n i n g Pretraining Pretraining 中的分类一步即 S o f t M a x SoftMax SoftMax函数的输入可以是 w × x + b w \times x + b w×x+b,但之前设定 W = M , b = 0 W=M,b=0 W=M,b=0

Fine \ Tuning: s u p p o r t   t u n i n g support \ tuning support tuning中训练分类器,即训练 w w w b b b—— 可以提高准确性
在这里插入图片描述
小技巧:

  • 好的初始化:原先就直接拿 M M M进行分类的
    在这里插入图片描述
  • E n t r o p y   R e g u l a r i z a t i o n Entropy \ Regularization Entropy Regularization
    在这里插入图片描述
  • C o s i n e   S i m i l a r i t y Cosine \ Similarity Cosine Similarity + S o f t m a x   C l a s s i f i e r Softmax \ Classifier Softmax Classifier
    在这里插入图片描述
    在这里插入图片描述
    就是内积前做了一个归一化
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

明前大奏

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值