目标: 让机器自己学会学习,学会理解和判断事物的异同(如,区分两张图片内是相同的东西还是不同的东西,不是识别出是什么东西)
Pretraining
前景知识
- C o s i n e S i m i l a r i t y Cosine \ Similarity Cosine Similarity
作用: 衡量两个向量之间的相似度
- S o f t m a x Softmax Softmax:
-
S
o
f
t
m
a
x
C
l
s
s
i
f
i
e
r
Softmax \ Clssifier
Softmax Clssifier
具体过程
- 利用深度神经网络来提取特征,该网络需要被预训练 —— 结构和预训练方法会对最终结果产生影响
- 拿预训练的网络对
S
u
p
p
o
r
t
S
e
t
Support \ Set
Support Set 中的各任务(各类别,
K
W
a
y
K \ Way
K Way)提取特征—— 每个任务中的各元素分别提取特征(
N
S
h
o
t
N \ Shot
N Shot),再合起来做均值,再做归一化,成为该任务(类别)的表征
- 对
Q
u
e
r
y
Query
Query 做分类
F i n e T u n i n g Fine \ Tuning Fine Tuning
背景: P r e t r a i n i n g Pretraining Pretraining 中的分类一步即 S o f t M a x SoftMax SoftMax函数的输入可以是 w × x + b w \times x + b w×x+b,但之前设定 W = M , b = 0 W=M,b=0 W=M,b=0
Fine \ Tuning: 在
s
u
p
p
o
r
t
t
u
n
i
n
g
support \ tuning
support tuning中训练分类器,即训练
w
w
w和
b
b
b—— 可以提高准确性
小技巧:
- 好的初始化:原先就直接拿
M
M
M进行分类的
-
E
n
t
r
o
p
y
R
e
g
u
l
a
r
i
z
a
t
i
o
n
Entropy \ Regularization
Entropy Regularization
-
C
o
s
i
n
e
S
i
m
i
l
a
r
i
t
y
Cosine \ Similarity
Cosine Similarity +
S
o
f
t
m
a
x
C
l
a
s
s
i
f
i
e
r
Softmax \ Classifier
Softmax Classifier
就是内积前做了一个归一化