1 什么是人工智能
- 智能定义角度: 人类行为的复刻 和 “理性”
- 智能主题角度:内部的思维过程和推理 和 外部的智能行为
1.1 类人行为:图灵测试方法
图灵测试 (Turing test) : 一个思维实验用以回避”机器能思考吗?“这个哲学上的问题——如果人类提问者在提出一些书面问题后无法分辨书面回答是来自人还是来自计算机,那么计算机就能通过测试
应对图灵测试,计算机需要具备的能力:
● 自然语言处理(natural language processing),以使用人类语言成功地交流;
● 知识表示(knowledge representation),以存储它所知道或听到的内容;
● 自动推理(automated reasoning),以回答问题并得出新的结论;
● 机器学习(machine learning),以适应新的环境,并检测和推断模式
注: 图灵认为,没有必要对人进行物理模拟来证明智能
完全图灵测试(total Turing test): 需要与真实世界中的对象和人进行交互
应完全对图灵测试,计算机还需要具备的能力:
● 计算机视觉(computer vision)和语音识别功能,以感知世界;
● 机器人学(robotics),以操纵对象并行动
以上6个学科构成了人工智能的大部分内容
1.2 类人思考:认知建模方法
通过3种方式了解人类的思维:
● 内省(introspection)——试图在自己进行思维活动时捕获思维;
● 心理实验(psychological experiment)——观察一个人的行为;
● 大脑成像(brain imaging)——观察大脑的活动
一旦我们有了足够精确的心智理论,就有可能把这个理论表达为计算机程序
认知科学(cognitive science):是一跨学科领域,汇集了人工智能的计算机模型和心理学的实验技术,用以构建精确且可测试的人类心智理论;必须建立在对人类或动物实验研究的基础上
1.3 理性思考:“思维法则”方法**
逻辑学家创建的符号系统: 描述世界上物体及其之间的关系 【普通算术表示系统只提供关于数的描述】
- 人工智能中所谓的逻辑主义(logicism)传统希望在此类程序的基础上创建智能系统
逻辑: 要求关于世界的认知是确定的,但是 实际上这很难实现 —— 使用 概率论
概率论:
● 允许在掌握不确定信息的情况下进行严格的推理
● 原则上,允许构建全面的理性思维模型,从原始的感知到对世界运作方式的理解,再到对未来的预测
● 但是,无法做形成智能行为 —— 需要关于理性行为的理论,仅靠理性思考是不够的
1.4 理性行为:理性智能体方法
智能体(agent): 某种能够采取行动的东西(agent来自拉丁语agere,意为“做”)—— 自主运行、感知环境、长期持续存在、适应变化以及制定和实现目标
理性智能体(rational agent): 需要为取得最佳结果或在存在不确定性时取得最佳期望结果而采取行动
- 基于人工智能的“思维法则”方法重视正确的推断 —— 采取理性行为的一种方式是推断出某个给定的行为是最优的,然后采取行动
- 理性行为的有些方式并不能说与推断有关
基于人工智能的理性智能体方法的优点:
- 比“思维法则”方法更普适,因为正确的推断只是实现理性的几种可能机制之一
- 更适合科学发展,理性的标准在数学上是明确定义且完全普适的
人工智能:专注于研究和构建做正确的事情的智能体
,其中正确的事情是我们提供给智能体的目标定义 —— 标准模型(standard model)
1.5 益机 beneficial machine
- 从长远来看,标准模型可能不是一个正确的模型 : 假设总是为机器提供完全指定的目标 —— 真实世界中,我们越来越难以完全正确地指定目标
价值对齐问题(value alignment problem):人类的真实需求和施加给机器的目标之间达成一致
对人类可证益的(provably beneficial)智能体:
- 一台实现固定目标的机器可能会出现很多不当行为,要预测所有不当行为是不可能的 —— 标准模型的不充分性
- 不能将目标完美地传达给机器,那么当一台机器意识到它不了解完整的目标时,它就会有谨慎行动的动机,会寻求许可,并通过观察来更多地了解我们的偏好,遵守人为控制
2 人工智能的基础
为人工智能提供思想、观点和技术的学科的历史
2.1 哲学
-
可以使用形式化规则得出有效结论吗?
- 亚里士多德:一套非正式的三段论系统进行适当的推理,该系统原则上允许人们在给定初始前提下机械地得出结论
- 拉蒙·鲁尔 : 设计一种推理系统—— 一组可以旋转成不同排列的纸盘的
- 列奥纳多·达·芬奇:设计但未制造了一台机械计算器
- 布莱兹·帕斯卡:建造了滚轮式加法器
- 戈特弗里德·威廉·莱布尼茨:制造了一台机械设备,旨在根据概念而非数值进行操作,但其应用范围相当有限
- 托马斯·霍布斯:提出了会思考的机器的想法,用他的话说就是一种“人造动物”,设想“心脏无非就是发条,神经只是一些游丝,而关节不过是一些齿轮”。还主张推理就像是数值计算,认为“推理就是一种计算,也就是相加减
-
思维是如何从物质大脑中产生的?
- 一种观点:思维至少在某种程度上是根据逻辑或数值规则运作的,可以建立模仿其中的一些规则的物理系统
- 勒内·笛卡儿【二元论的支持者】:人类思维(灵魂或者精神)的一部分处于自然之外,不受物理定律的约束。但是,动物不具备这种二元特性,它们可以被视为机器
- 唯物主义: 大脑根据物理定律的运作构成了思维。自由意志仅仅是实体对可选决策的感知 —— 物理主义(physicalism)和自然主义(naturalism)
-
知识从何而来?
- 经验主义(empiricism):知识归根到底都来源于经验
- 归纳法(induction):通过暴露要素之间的重复联系获得一般规则
- 逻辑实证主义(logical positivism):所有知识都可以通过逻辑理论来描述,逻辑理论最终与对应于感知输入的观察语句(observation sentence)相联系—— 结合了理性主义和经验主义
- 确证理论(confirmation theory):通过量化应分配给逻辑语句的信念度来分析从经验中获取知识,信念度的取值基于逻辑语句与确证或否定它们的观察之间的联系
-
知识如何导致行为?
- 智能不仅需要推理,还需要动作;而且只有理解了怎样的行为是合理的,才能理解如何构建行为是合理的(或理性的)智能体——知识与动作之间的联系对人工智能至关重要
- 亚里士多德:动作的合理性是通过目标和动作结果的知识之间的逻辑联系来证明的 —— 贪婪回归规划系统 —— 纽厄尔和西蒙在他们的通用问题求解器(General Problem Solver)程序中实现 ——
基于逻辑规划以实现确定目标
- 丹尼尔·伯努利:引入效用(utility)概念 —— 在不确定性下 ,理性决策的现代概念涉及
最大化期望效用
- 杰里米·边沁和约翰·斯图尔特·穆勒:提出了功利主义(utilitarianism)思想,基于效用最大化的理性决策应该适用于人类活动的所有领域,包括代表许多个体做出公共政策的决策——考虑多个个体的利益
- 功利主义是一种特殊的结果主义(consequentialism),行为的预期结果决定了正确与否
- 伊曼努尔·康德: 提出 基于规则/ 义务伦理学(deontological ethics)的理论,“做正确的事”不是由结果决定的,而是由管理可行行为的普适社会法则所决定的,可行行为包括“不要撒谎”“不要杀人”等。因此,如果期望的好处大于坏处,那么功利主义者可以撒一个善意的谎言,但康德主义者则不能这样做,因为撒谎本质上就是错误的
2.2 数学
-
得出有效结论的形式化规则是什么?
- 形式化逻辑(formal logic):
- 乔治·布尔提出了命题和布尔逻辑的细节
- 戈特洛布·弗雷格将布尔逻辑扩展到包括对象和关系,创建了沿用至今的一阶逻辑
- 概率(probability)论:信息不确定情况下的广义逻辑
- 托马斯·贝叶斯提出了根据新证据更新概率的法则即贝叶斯法则
- 统计学(statistics)利用 概率的形式化结合数据的可用性
- 形式化逻辑(formal logic):
-
什么可以被计算? —— 可计算性(computability)
- 能够通过有效的过程进行计算
- 库尔特·哥德尔:不完全性定理(incompleteness theorem),在任何像皮亚诺算术(Peano arithmetic,自然数的基本理论)这样强的形式化理论中,必然存在一些没有证明的真实陈述 ,如 作用于整数上的某些函数无法用算法表示
- 丘奇-图灵论题(Church-Turing thesis):提出将图灵机可计算的函数作为可计算性的一般概念。但存在某些任何图灵机都无法计算的函数
-
易处理性(tractability)
- 如果解决一个问题实例所需的时间随着问题规模呈指数增长,那么这个问题就是难处理的——即使是中等规模的问题实例也无法在合理的时间内解决
- 斯蒂芬·库克和理查德·卡普 :开创NP完全性(NP-completeness)理论为分析问题的易处理性提供了基础即
任何可以归约到NP完全的问题都可能是难处理的
2.3 经济学
- 决策论(decision theory): 结合了概率论和效用理论,为在不确定性下做出个体决策(经济的或其他的)提供了一个形式化完整的框架,也就是说,概率适当地描述了决策者所处的环境—— 适用于“大型”经济体,在这种经济体中,每个主体都无须关注其他独立主体的行为
- 博弈论(game theory):一个参与者的行为可以显著影响另一个参与者的效用(积极或消极的)——适用于“小型”经济体
- 约翰·冯·诺伊曼和奥斯卡·摩根斯特恩 : 对于某些博弈,理性智能体应该采用随机(或至少看起来是随机)的策略
- 与决策论不同,博弈论并没有为行为的选择提供明确的指示
- 运筹学(operations research):当行为的收益不是立即产生的,而是在几个连续的行为后产生时,应该如何做出理性的决策
- 理查德·贝尔曼 :将一类序贯决策问题进行了形式化,称为马尔可夫决策过程(Markov decision process)
2.4 神经科学 neuroscience
一组简单的细胞就可以产生思维、行为和意识:
- 信号通过复杂的电化学反应从一个神经元传递到其他神经元 —— 大脑学习的基础
- 这些信号可以在短期内控制大脑活动,还可以长期改变神经元的连通性
- 大多数信息都在大脑皮质(大脑的外层)中处理的
一些窥探大脑活动的技术发展:
- 汉斯·伯杰(Hans Berger)发明脑电图仪(EEG)
- 功能磁共振成像(fMRI)(Ogawa et al., 1990; Cabeza and Nyberg, 2001)
- 单细胞电记录技术和光遗传学(optogenetics)方法(Crick, 1999; Zemelman et al., 2002;Han and Boyden, 2007)
- 脑机接口(brain-machine interface):重要发现是,大脑能够自我调整,使自己成功与外部设备进行交互
2.5 心理学
- 赫尔曼·冯·赫尔姆霍茨和威廉·温特: 科学心理学的起源
- 将科学方法应用于人类视觉的研究
- 第一个实验心理学实验室:温特坚持严格控制的实验,他实验室的工作人员在进行感知或联想任务的同时,内省他们的思维过程
- 严格的控制在很大程度上帮助心理学成为了一门科学,但是数据的主观性质使得实验者不太可能会推翻自己的理论
- 赫伯特·詹宁斯 : 缺乏内省的数据,发展了一种客观的方法研究动物行为
- 约翰·沃森 : 领导行为主义(behaviorism)运动将这一观点应用于人类,以内省无法提供可靠证据为由,拒绝任何涉及心理过程的理论
- 行为主义者坚持只研究施加动物的感知(或刺激)及其产生的行为(或反应)的客观度量
- 行为主义发现了很多关于老鼠和鸽子的知识,但是在理解人类方面却不太成功
- 认知心理学(cognitive psychology):
- 大脑是一个信息处理设备:追溯到威廉·詹姆斯
- 赫尔姆霍茨:感知涉及一种无意识的逻辑推断形式
- 弗雷德里克·巴特利特及其继任者:认知模型
- 克雷克:指出知识型智能体的3个关键步骤:(1)刺激必须转化为一种内在表示;(2)认知过程处理表示,从而产生新的内部表示;(3)这些过程反过来又被重新转化为行为
- 布劳德本特:将心理现象建模为信息处理
- 计算机建模的发展导致了认知科学(cognitive science)领域的诞生:
认知理论应该从信息处理的角度来描述认知功能的运作
/ 认知理论应该就像一个计算机程序
- 人机交互(human-computer interaction,HCI):
- 道格·恩格巴特 : 智能增强(intelligence augmentation)(IA而非AI)—— 计算机应该增强人类的能力,而不是完全自动化人类的任务
将IA和AI视为同一枚硬币的两面,前者强调人类控制,而后者强调机器的智能行为,都是机器有利于人类所必需的
2.6 计算机工程
- 硬件方面:
- 数字电子计算机
- 机器硬件:图形处理单元(GPU)、张量处理单元(TPU)和晶圆级引擎(WSE)
- 软件方面: 提供编写现代程序所需的操作系统、编程语言和工具
- 人工智能对其有回馈的领域:人工智能工作开创的许多想法正重归主流计算机科学,包括分时、交互式解释器、使用窗口和鼠标的个人计算机、快速开发环境、链表数据类型、自动存储管理,以及符号式编程、函数式编程、说明性编程和面向对象编程的关键概念
2.7 控制理论与控制论
- 尽管人工智能和控制理论的创始人之间有着密切的联系,为什么它们却是两个不同的领域呢?
- 答案在于参与者所熟悉的数学技术与每种世界观所包含的对应问题是紧密结合的:
- 微积分和矩阵代数是控制理论的工具,它们适用于固定的连续变量集描述的系统,而人工智能的建立在一定程度上是为了避开这些可感知的局限性
- 逻辑推理和计算工具使人工智能研究人员能够考虑语言、视觉和符号规划等问题,而这些问题完全超出了控制理论家的研究范围
2.8 语言学
现代语言学和人工智能几乎同时“诞生”,并一起成长,交叉于一个称为计算语言学(computational linguistics)或自然语言处理(natural language processing)的混合领域
3 人工智能的历史
- 马文·明斯基(Marvin Minsky)(1969年图灵奖得主)和约翰·麦卡锡(John McCarthy)(1971年图灵奖得主)定义了基于表示和推理的领域基础;
- 艾伦·纽厄尔(Allen Newell)和赫伯特·西蒙(Herbert Simon)(1975年图灵奖得主)提出了关于问题求解和人类认知的符号模型;
- 爱德华·费根鲍姆(Ed Feigenbaum)和劳伊·雷迪(Raj Reddy)(1994年图灵奖得主)开发了通过对人类知识编码来解决真实世界问题的专家系统;
- 朱迪亚·珀尔(Judea Pearl)(2011年图灵奖得主)提出了通过原则性的方式处理不确定性的概率因果推理技术;
- 约书亚·本吉奥(Yoshua Bengio)、杰弗里·辛顿(Geoffrey Hinton)和杨立昆(Yann LeCun)(2018年图灵奖得主),他们将“深度学习”(多层神经网络)作为现代计算的关键部分
3.1 人工智能的诞生(1943—1956)
- 沃伦·麦卡洛克和沃尔特·皮茨:提出了一种人工神经元模型,其中每个神经元的特征是“开”或“关”,并且会因足够数量的相邻神经元受到刺激而切换为“开”——人工智能的第一项研究工作【选择了3方面的资源构建模型:①基础生理学知识和大脑神经元的功能,②罗素和怀特海(Whitehead)对命题逻辑的形式化分析,以及③图灵的计算理论】
- 1949,唐纳德·赫布:示范了用于修改神经元之间连接强度的简单更新规则即赫布型学习(Hebbian learning)
- 1950,图灵的文章“Computing Machinery and Intelligence”介绍了图灵测试、机器学习、遗传算法和强化学习。他还认为,通过开发学习算法然后教会机器,而不是手工编写智能程序,将更容易创造出人类水平的人工智能【早在1947年,他就在伦敦数学协会(London Mathematical Society)就人工智能主题发表了演讲】
- 1950,马文·明斯基和迪安·埃德蒙兹:建造了第一台神经网络计算机——SNARC
- 1952,克里斯托弗·斯特雷奇和亚瑟·塞缪尔分别独立开发的西洋跳棋程序
- 1956,人工智能研讨期间,艾伦·纽厄尔和赫伯特·西蒙提出了一个称为“逻辑理论家”(Logic Theorist,LT)的数学定理证明系统
3.2 早期热情高涨,期望无限(1952—1969)
- 纽厄尔和西蒙:通用问题求解器即GPS,可能是第一个体现“人类思维”方式的程序
- 纽厄尔和西蒙:提出了著名的物理符号系统(physical symbol system)假说,该假说认为“物理符号系统具有进行一般智能动作的必要和充分方法”—— 任何显示出智能的系统(人类或机器)必须通过操作由符号组成的数据结构来运行
- 赫伯特·盖伦特:构造了几何定理证明程序(Geometry Theorem Prover),它能够证明许多数学学生认为相当棘手的定理—— 现代数学定理证明程序的先驱
- 亚瑟·萨缪尔:通过使用现在称之为强化学习的方法完成西洋跳棋程序
- 1958,约翰·麦卡锡:
- 定义了高级语言Lisp,Lisp在接下来的30年中成为了最重要的人工智能编程语言
- 在一篇题为“Programs with Common Sense”的论文中,为基于知识和推理的人工智能系统提出了概念性议案,描述了假想程序 “建议接受者”(Advice Taker),此程序包含了世界的一般知识,并可以利用它得出行动规划
- 马文·明斯基及学生:研究一些似乎需要智能才能求解的有限问题,而这些有限的领域被称为微世界(microworld)
- 詹姆斯·斯莱格尔的 S a i n t S_{aint} Saint程序能够求解大学一年级课程中典型封闭形式的微积分问题
- 托马斯·埃文斯的 A n a l o g y A_{nalogy} Analogy程序能够解决智商测试中常见的几何类比问题
- 丹尼尔·博布罗的 S t u d e n t S_{tudent} Student项目能够求解代数故事问题
- 最著名的微世界是积木世界(blocks world):由一组放置在桌面上的实心积木组成(或者更常见的是模拟桌面)
- 戴维·哈夫曼(David Huffman)(Huffman, 1971)的视觉项目、戴维·沃尔茨(David Waltz)(Waltz, 1975)的视觉和约束传播工作、帕特里克·温斯顿(Patrick Winston)(Winston, 1970)的学习理论、特里·温诺格拉德(Terry Winograd)(Winograd, 1972)的自然语言理解程序以及斯科特·法尔曼(Scott Fahlman)(Fahlman, 1974)的规划器
- 什穆埃尔·温诺格拉德和杰克·考恩:基于麦卡洛克和皮茨提出的神经网络,研究大量元素如何共同代表一个独立的概念,同时提升稳健性和并行性
- 伯尼·维德罗和弗兰克·罗森布拉特:基于赫布的学习方法,分别研究出线性自适应神经网络(adaline)和感知机(perceptron)
- 感知机收敛定理(perceptron convergence theorem):Block et al. 指出,学习算法可以调整感知机的连接强度来拟合任何输入数据(前提是存在这样的拟合)
3.3 一些现实(1966—1973)
-
在几乎所有情况下,早期人工智能系统在更困难的问题上都失败了,失败原因:
- 许多早期人工智能系统主要基于人类如何执行任务的“知情内省型”,而不是基于对任务、解的含义以及算法需要做什么才能可靠地产生解的仔细分析
- 对人工智能要求解的问题的复杂性缺乏认识:大多数早期的问题求解系统都会尝试组合不同的步骤,直到找到解为止
一般而言,程序可以找到解的事实并不意味着该程序具备任何在实践中找到解所需的机制
- 产生智能行为的基础结构存在一些根本限制,如尽管感知机(一种简单的神经网络形式)被证明可以学习它们能够表示的任何事物,但它们能表示的事物很少
3.4 专家系统(1969—1986)
- 弱方法(weak method) : 在人工智能研究的前十年提出的问题求解是一种通用搜索机制,试图将基本的推理步骤串在一起,找到完整的解 —— 这种方法虽然很普适,但它不能扩展到大型或困难的问题实例上
- 弱方法的替代方案:使用更强大的领域特定的知识,这些知识允许更大规模的推理步骤,并且可以更轻松地处理特定专业领域中发生的典型案例
- 爱德华·费根鲍姆、布鲁斯·布坎南和乔舒亚·莱德伯格: D e n d r a l D_{endral} Dendral程序 解决了从质谱仪提供的信息推断分子结构的问题 ——第一个成功的知识密集型系统:它的专业知识来源于大量专用规则
-
M
y
c
i
n
M_{ycin}
Mycin系统:用于诊断血液感染;与
D
e
n
d
r
a
l
D_{endral}
Dendral 有两个主要区别:
- 不像 D e n d r a l D_{endral} Dendral规则,不存在可以推导出Mycin规则的一般理论模型, M y c i n M_{ycin} Mycin规则不得不从大量的专家访谈中获得
- 其次,规则必须反映与医学知识相关的不确定性。 M y c i n M_{ycin} Mycin引入了一种称为确定性因子(certainty factor)的不确定性计算
- 第一个成功的商用专家系统R1 : 助公司配置新计算机系统的订单
- 为复杂领域构建和维护专家系统是困难的,一部分原因是系统使用的推理方法在面临不确定性时会崩溃,另一部分原因是系统无法从经验中学习
3.5 神经网络的回归(1986—现在)
- 反向传播(back-propagation)学习算法
- 联结主义(connectionist)模型
3.6 概率推理和机器学习(1987—现在)
- 整洁派 neat : 人工智能理论应该以数学的严谨性为基础
- 邋遢派 scruffy : 宁愿尝试大量的想法,编写一些程序,然后评估哪些似乎可行
- 向整洁派的转变意味着该领域已经达到了稳定和成熟的水平
- 目前对深度学习的重视可能代表着邋遢派的复兴
人工智能的创立在一定程度上是对控制理论和统计等现有领域局限性的反抗,其早期以符号计算的新形式使大部分经典理论过时是似乎合理,但随着发展,人们认识到 机器学习不应该独立于信息论,不确定推理不应该独立于随机建模,搜索不应该独立于经典优化和控制,自动推理不应该独立于形式化方法和静态分析
- 1988,工智能与统计学、运筹学、决策论和控制理论等其他领域相联系的重要一年:
- 朱迪亚·珀尔:使概率和决策论在人工智能中得到了新的认可;对贝叶斯网络的发展产生了一种用于表示不确定的知识的严格而有效的形式体系,以及用于概率推理的实用算法
- 理查德·萨顿:将强化学习与运筹学领域开发的马尔可夫决策过程(Markov decision processe,MDP)联系起来;随后大量工作将人工智能规划研究与MDP联系起来,强化学习领域在机器人和过程控制方面找到了应用,并获得了深厚的理论基础
3.7 大数据(2001—现在)
大数据的可用性和向机器学习的转变帮助人工智能恢复了商业吸引力
3.8 深度学习(2011—现在)
深度学习(deep learning):
+ 使用多层简单的、可调整的计算单元的机器学习
+ 在很大程度上依赖于强大的硬件、大量训练数据的可用性,以及一些算法技巧
4 其他
AI的分类:
- 弱人工智能(Artificial Narrow Intelligence, ANI): 基于一组有限的参数、约束和上下文来模拟人类行为,被编程为执行单一任务,例如面部识别、语音助手中的语音识别或驾驶汽车
- 強人工智能(Artificial General Intelligence, AGI) / 人类级别的人工智能(human-level AI,HLAI):机器应该能够学会做人类可以做到的任何事情
- 超人工智能(Artificial Superintelligence, ASI) : 不仅能理解人类的情感和经历,还能唤起他们自己的情感、信念和欲望,类似于人类