
Knowledge distillation comprehensive survey
利用教师-学生体系结构的知识提炼的自然特性,知识提炼被用作解决对抗性攻击或深度模型的扰动的有效策略(Papernot等人,2016年;罗斯和多希-贝莱斯,2018年;Goldblum等人,2020年;Gil等人,2019)以及具体而言,敌对样本的扰动可以通过蒸馏由教师网络的稳健输出克服(Ross和Doshi-Velez,2018;Papernot等人,2016年)。当然,知识提炼还有其他特别有趣的应用,例如神经体系结构搜索(Macko等,2019年;










