Pattern Recognition投稿经验

本文分享了如何准备PatternRecognition论文的手稿,包括选择模板、格式修改(如latex、行距要求)、作者信息、引用格式和TitlePage/Highlights的制作。详述了投稿过程中的注意事项和所需材料。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

合作推广,分享一个人工智能学习网站。计划系统性学习的同学可以了解下,点击助力博主脱贫( •̀ ω •́ )✧

停更了大半年,近期终于完成了论文投稿,趁我还记得分享一下投稿经验,顺便给我的论文积点功德(bushi

Manuscript


在完成论文撰写后,首要工作就是找到目标期刊的模板,修改格式生成手稿。
怎么找目标期刊先挖个坑,本文就以Pattern Recognition (PR)为例。在PR的作者指南中,找到latex,点击elsarticle.cls
在这里插入图片描述

然后点击downloud下载模板。
在这里插入图片描述

打开后选择一个模板,如用elsarticle-template-num.tex
在这里插入图片描述

模板是Elsevier出版社提供的,所以要根据每个期刊的要求修改格式,具体细节可以参考具体期刊的官方文档。里面用不到的就注释掉,根据自己的需求进行删改。如\journal改成PR,原来的是Nuclear Physics B。
在这里插入图片描述

然后一些需要注意的点,比如在提交系统中第一个就是要求单栏双倍行距:
在这里插入图片描述
虽然最后见刊是双栏的,也得按照要求来。使用review获得双倍行距:
在这里插入图片描述
然后1p和3p都可以是单栏的,5p是双栏的。
在这里插入图片描述
可以直接复制:

\documentclass[preprint,review,3p,times,sort&compress]{elsarticle}

然后就是作者,地址,通讯什么的,参考官方文档问题不大,最后调整一下图片表格位置即可。然后引用的格式,PR给出了图片引用应该是Fig .1,其他的没有具体举例,参考该期刊最新的一些论文,是Table 1,Eq. (1)这种格式。
在这里插入图片描述

添加以下命令,然后使用\autoref引用即可。

\newtheorem{definition}{Definition}
\newcommand{\algorithmautorefname}{Algorithm}
\newcommand{\eqautoref}[1]{\hyperref[#1]{Eq.~(\ref*{#1})}}
\captionsetup[subfigure]{labelformat=simple}
\renewcommand\thesubfigure{(\alph{subfigure})}
\newtheorem{theorem}{Theorem} 
\newtheorem{lemma}{Lemma}
\newcommand{\lemmaautorefname}{Lemma}
\DeclareCaptionLabelFormat{myformat}{\textbf{Fig. #2}}
\captionsetup[figure]{labelformat=myformat}
\def\figureautorefname{Fig.}

还有一些细节,如摘要不超过150词,页数20-35,引用文献35-45等,都需要详细的阅读作者指南,这一步是你逃不掉的。最后就完成了Manuscript的pdf生成。接下来在提交系统中还需要一些材料:
在这里插入图片描述

Title Page


同样是需要细读作者指南,同时Elsevier也给出了一些视频讲解
Title Page主要是包含标题、作者和作者信息、唯一通讯作者。比如建议标题是话题+应用的格式(topic-application)。用一个空白pdf包含这些信息即可,然后上传到提交系统。
在这里插入图片描述

Highlights


Highlights同样也是用一个pdf单独上传到提交系统中,包括3-5个亮点,总共不超过85个词。
在这里插入图片描述

插播反爬信息 )博主CSDN地址:https://wzlodq.blog.csdn.net/

比如给出了一些例子:
在这里插入图片描述

Author Biography


作者传记也是必须上传的,每个作者的介绍不超过50词,可以带作者照片。一般包含学历,现任工作和主要研究兴趣等,可以多参考几篇文献怎么写的,大同小异。
在这里插入图片描述

此外,还有一个图形化摘要也可以上传,是一个可选项:
在这里插入图片描述

Declaration


最后利益声明下载模板,进行填写即可:
在这里插入图片描述

这里演示怎么下载没有竞争利益的模板:
如上图,点击作者指南中的this template,点击箭头所指:
在这里插入图片描述

点击没有竞争需要声明:
在这里插入图片描述
然后就跳转到下载链接了。

Submit


最后就是提交了:
在这里插入图片描述

首先需要注册账号,包括一些邮箱、研究兴趣等个人信息的填写,注册成功之后可以开始提交了。
在这里插入图片描述

这里就懒得倒回去截图了,需要填写很多信息,还需要推荐至少2个审稿人,以及写一个comment信,交给你神通广大的通讯作者(导师)即可。完成之后就能点进去看状态了:
在这里插入图片描述

最后祝大家投稿顺利!

原创不易,请勿转载本不富裕的访问量雪上加霜
博主首页:https://wzlodq.blog.csdn.net/
来都来了,不评论两句吗👀
如果文章对你有帮助,记得一键三连❤

### 关于模式识别期刊(Pattern Recognition Journal)的投稿流程 模式识别领域的重要会议之一是中国模式识别与计算机视觉大会(Chinese Conference on Pattern Recognition and Computer Vision),这表明该领域的研究活动频繁且具有较高的学术价值[^1]。然而,在提交论文至相关期刊时,需遵循严格的投稿流程。 通常情况下,模式识别类期刊的投稿过程包括以下几个方面: #### 1. **选刊** 作者应根据研究成果的主题和范围选择合适的期刊。例如,《Pattern Recognition》作为模式识别领域的顶级期刊,适合高质量的研究成果。此外,也可以考虑其他相关领域的期刊,如《Engineering Applications of Artificial Intelligence》,它专注于人工智能技术的实际工程应用[^5]。 #### 2. **准备稿件** 在撰写论文之前,务必仔细阅读目标期刊的作者指南(Author Guidelines)。这些指南会明确规定文章结构、格式要求以及字数限制等内容。如果未能满足基本要求,则可能导致拒稿。例如,某篇论文因缺乏科学意义而在初审阶段即被拒绝[^3]。 #### 3. **同行评审** 一旦完成稿件并成功提交到选定的目标期刊之后,编辑部会对来稿进行初步筛选。通过预检的文章会被送交至少两位独立专家进行匿名审查。这一环节可能持续几周甚至几个月时间不等。在此期间,作者可以通过在线跟踪系统查询状态更新情况。 #### 4. **修改与再投** 基于审稿人的意见返回给原作者后,他们需要认真对待每一条建议并对原文做出相应调整后再重新上传修订版文档供进一步审核之用。有时可能会经历多轮反复沟通直至最终决定接受与否为止。 #### 5. **出版** 当一篇文章经过严格检验被认为达到发表标准以后,就会进入排版校样阶段最后正式刊登出来供大家查阅学习参考使用了。 ```python # 示例代码:模拟简单的投稿状态追踪程序 class ManuscriptStatusTracker: def __init__(self, manuscript_id): self.manuscript_id = manuscript_id self.status = "Submitted" def update_status(self, new_status): self.status = new_status def get_current_status(self): return f"Manuscript {self.manuscript_id} is currently at status: {self.status}" tracker = ManuscriptStatusTracker(12345) print(tracker.get_current_status()) # 输出当前状态 tracker.update_status("Under Review") print(tracker.get_current_status()) # 更新后的状态 ``` 以上是对模式识别期刊投稿的一般性介绍及其常见步骤概述。
评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

吾仄lo咚锵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值