AIGC内容分享(四十二):2023年AIGC场景应用展望研究报告

本文详细探讨了AIGC技术的发展历程、ChatGPT的影响、技术新突破、大模型要素、产业链划分、应用层机遇与挑战,以及全球和中国AIGC产业的融资动态和行业应用分析,展望了AIGC在各领域的实践与未来发展趋势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

核心摘要

AIGC研究范畴界定

AI&AIGC的演进历程

技术视角:AIGC产业技术新突破

为何ChatGPT被称为AI的“iPhone”时刻?

从ChatGPT的爆火看AIGC的技术发展

“成熟”的AIGC大模型需要哪些要素? 

通用基础的AIGC大模型发展重点

AIGC产业链路

产业链中的模型层有望实现分化

产业链中的应用层尤其值得关注

未来中国的AIGC产业将走向何方(1/3)

未来中国的AIGC产业将走向何方(2/3)

未来中国的AIGC产业将走向何方(3/3)

产业视角:AIGC的产业新变革

AIGC产业融资概览

AIGC场景应用图谱

AIGC实践及应用:行业应用变革分析

AIGC实践及应用:行业应用变革分析

AIGC实践及应用:游戏行业

AIGC实践及应用:广告营销行业

AIGC实践及应用:媒体影视行业

AIGC实践及应用:电子商务行业

AIGC实践及应用:医疗行业

AIGC实践及应用:金融行业

AIGC浪潮下的机遇与挑战


核心摘要

《2023年AIGC场景应用展望研究报告》从技术侧和产业侧两个角度探讨了AIGC产业的现状及产业的未来方向。在整个2023年行业异常火爆的背景下,应用层创业机会较多且具有先发的可能性,其中行业解决方案企业的思路更多是围绕某个行业需求进行服务,发展机会更大。但对于不同赛道而言,机会的大小存在差异。为了更好的把握AIGC产业的未来方向,需要重点关注AIGC的本质。本文构建了2023年各行业应用AIGC能力矩阵“设置相应的评估指标(“AIGC在行业可变革程度”与“行业商业变现能力”这两个维度下细分不同市场),在此基础上输出研究结果。针对产业发展影响最为明显的赛道进行详细阐述及相关案例支持。艾瑞咨询研究院在此研究基础上输出“2023年中国AIGC场景应用领航者top30榜单”。

AIGC研究范畴界定

AIGC是内容生产方式的进阶,实现内容和资产的再创造

AIGC(AI-Generated Content)本质上是一种内容生产方式,即人工智能自动生产内容,是基于深度学习技术,输入数据后由人工智能通过寻找规律并适当泛化从而生成内容的一种方式。过往的内容创作生态主要经历了PGC、UGC到AIUGC的几个阶段,但始终难以平衡创作效率、创作成本及内容质量三者之间的关系,而AIGC可以实现专业创作者和个体自由地发挥创意,降低内容生产的门槛,带来大量内容供给。此外,对于仍处于摸索阶段的元宇宙世界,AIGC技术的发展也带来了解决元宇宙内容创造问题的解决可能,可实现为元宇宙世界构建基石的关键作用。

图片

AI&AIGC的演进历程

从决策判别到创造生成,人工智能进入双“G”时代

AI的发展经历了从决策式AI到生成式AI的过程。在2010年之前,AI以决策式AI为主导,决策式AI学习数据中的条件概率分布,底层逻辑是AI提取样本特征信息,与数据库中的特征数据进行匹配,最后对样本进行归类,主要针对对样本的识别和分析。2011年之后随着深度机器学习算法以及大规模预训练模型的出现,AI开始迈入生成式AI时代,生成式AI的特征是可以根据已有的数据进行总结归纳,自动生成新的内容,在决策式AI决策、感知能力的基础上开始具备学习、执行、社会协作等方面的能力。当下人工智能在生成(Generation)和通用(General)两条主线上不断发展。

图片

技术视角:AIGC产业技术新突破

为何ChatGPT被称为AI的“iPhone”时刻?

代表了大模型时代的爆发,使得AI的可用性与易用性大幅提升

ChatGPT达到1亿用户只用了2个月,与之对应,即便是Apple APP store也花费了2年时间才达到1亿用户,人工智能正以摧枯拉朽的势头席卷整个科技圈,英伟达CEO黄仁勋更是喊出ChatGPT就是AI的“iPhone时刻”。

图片

从ChatGPT的爆火看AIGC的技术发展

Transformer类架构的发展带动多模态融合,为范式转变奠定基础

在图像生成领域内,CNN类架构是一个重要的里程碑,尤其擅长图像分类和目标检测任务,但由于难以生成高分辨率任务、难以捕捉图像全局结构和语义信息。近年来,Transformer类架构在图像生成领域也开始逐渐被应用,在自然语言处理领域的机器翻译任务中,Transformer已经成为了一种主流的模型架构。在图像生成领域,Transformer类架构可以有效地捕捉图像的全局结构和语义信息,同时也可以生成高分辨率、逼真的图像,多模态架构逐渐成为了图像生成领域的研究热点。多模态架构可以建立统一的、跨场景/任务的模型,将不同类型的数据(如图像、文本、音频等)融合起来,极大地拓展了人工智能认知并理解世界的能力边界。多模态学习在不同模态间搭建了桥梁,使得基础模型通过迁移学习和规模涌现达到能力跃迁成为可能,极大加速了通用模型的演进。

图片

“成熟”的AIGC大模型需要哪些要素? 

大模型是一场综合战斗,需要兼顾技术、人力和资本要素

AIGC产业的发展是对于技术条件、人才条件和资本条件的综合试炼场,其中技术条件无疑是核心的核心。AIGC技术主要由算法、算力和数据构成,三者互为因果。

图片

通用基础的AIGC大模型发展重点

技术能力是大模型发展基石,算力、算法和数据三者互为推手

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

之乎者也·

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值