AI 内容分享(一):人工智能技术概述

目录

前言

什么是智能?

学习

推理

问题解决

知觉

语言

人工智能的方法和目标

符号主义与联结主义方法

通用人工智能 (AGI)、应用人工智能和认知模拟

艾伦·图灵(Alan Turing)和人工智能的开端

理论工作

图灵测试

人工智能的早期里程碑

第一个人工智能程序

进化计算

逻辑推理和解决问题的能力

英语对话

人工智能编程语言

微观世界程序

专家系统

知识和推理

石鲈

霉素

CYC项目

联结主义

创建人工神经网络

感知器

共轭动词

其他神经网络

新 AI

新基础

定位方法

21世纪的人工智能

机器学习

自动驾驶汽车

大型语言模型和自然语言处理

虚拟助手


前言

人工智能 (AI),数字计算机或计算机控制的机器人执行通常与智能生物相关的任务的能力。该术语经常用于开发具有人类智力过程特征的系统的项目,例如推理、发现意义、概括或从过去的经验中学习的能力。自 1940 年代数字计算机发展以来,已经证明可以对计算机进行编程以非常熟练地执行非常复杂的任务,例如发现数学定理的证明或下棋。尽管如此,尽管计算机处理速度和内存容量不断进步,但目前还没有程序可以在更广泛的领域或需要大量日常知识的任务中与人类的灵活性相匹配。另一方面,一些程序在执行某些特定任务时已经达到了人类专家和专业人员的性能水平,因此这种有限意义上的人工智能可以在医疗诊断、计算机搜索引擎、语音或手写识别以及聊天机器人等各种应用中发现。

什么是智能?

除了最简单的人类行为外,所有的行为都归因于智力,而即使是最复杂的昆虫行为通常也不被视为智力的标志。有什么区别?考虑挖掘机黄蜂Sphex ichneumoneus的行为。当雌性黄蜂带着食物回到她的洞穴时,她首先把它放在门槛上,检查洞穴内是否有入侵者,然后,如果海岸是晴朗的,她才会把食物带进去。如果黄蜂在里面时将食物从她的洞穴入口移开几英寸远,那么黄蜂本能行为的真正本质就会显露出来:一旦出现,她会重复整个过程,就像食物被移位一样。智力——在斯菲克斯的案例中明显缺乏——必须包括适应新环境的能力。

心理学家通常不仅通过一种特征来描述人类智力,而且通过许多不同能力的组合来描述人类智力。人工智能的研究主要集中在智能的以下组成部分:学习、推理、解决问题、感知和使用语言。

学习

有许多不同的学习形式应用于人工智能。最简单的方法是通过反复试验来学习。例如,一个用于解决合一国际象棋问题的简单计算机程序可能会随机尝试移动,直到找到配对。然后,程序可能会将解决方案与位置一起存储,以便下次计算机遇到相同的位置时,它会调用该解决方案。这种对单个项目和程序的简单记忆(称为死记硬背)在计算机上相对容易实现。更具挑战性的是实现所谓的泛化的问题。泛化涉及将过去的经验应用于类似的新情况。例如,一个通过死记硬背来学习常规英语动词的过去时态的程序将无法产生一个单词的过去时态,例如jump,除非它以前已经出现了jumped,而一个能够概括的程序可以学习“add ed”规则,从而根据类似动词的经验形成jump的过去时态。

推理

理性就是根据情况得出适当的推论。推论分为演绎推论或归纳推论。前者的一个例子是,“弗雷德必须在博物馆或咖啡馆里。他不在咖啡馆里;因此他在博物馆里“,而后者则说,”以前的此类事故是由仪器故障引起的;因此,这次事故是由仪器故障引起的。这些推理形式之间最显着的区别在于,在演绎的情况下,前提的真实性保证了结论的真实性,而在归纳性的情况下,前提的真实性为结论提供了支持,而没有给出绝对的保证。归纳推理在科学中很常见,在科学中,收集数据并开发试探性模型来描述和预测未来的行为,直到异常数据的出现迫使模型被修改。演绎推理在数学和逻辑学中很常见,其中无可辩驳的定理的复杂结构是由一小群基本公理和规则建立起来的。

在对计算机进行编程以得出推论方面已经取得了相当大的成功。然而,真正的推理不仅仅涉及推论:它涉及推论与特定任务或情况的解决方案相关的推论。这是人工智能面临的最棘手的问题之一。

问题解决

问题解决,特别是在人工智能中,可以被描述为通过一系列可能的行动进行系统搜索,以达到一些预定义的目标或解决方案。解决问题的方法分为特殊目的和一般目的。专用方法是为特定问题量身定制的,并且经常利用嵌入问题的情况的非常具体的特征。相比之下,通用方法适用于各种各样的问题。人工智能中使用的一种通用技术是手段-目的分析,即逐步或增量地减少当前状态和最终目标之间的差异。该程序从手段列表中选择动作(对于简单的机器人,这可能包括 PICKUP、PUTDOWN、MOVEFORWARD、MOVEBACK、MOVELEFT 和 MOVERIGHT),直到达到目标。

人工智能程序已经解决了许多不同的问题。一些例子是在棋盘游戏中找到获胜的一步(或一连串的动作),设计数学证明,以及在计算机生成的世界中操纵“虚拟对象”。

知觉

在感知中,通过各种感觉器官(真实的或人造的)对环境进行扫描,并将场景分解为各种空间关系中的独立对象。由于物体的观察角度、场景中照明的方向和强度以及物体与周围视野的对比程度,物体的外观可能会有所不同,因此分析变得复杂。

最早将感知和行动整合在一起的系统之一是FREDDY,这是一个固定的机器人,具有移动的电视眼和钳形手,于1966-73年期间在唐纳德·米奇(Donald Michie)的指导下在苏格兰爱丁堡大学建造。弗雷迪能够识别各种物体,并且可以被指示从随机堆的组件中组装简单的文物,例如玩具车。目前,人工感知已经足够先进,使光学传感器能够识别个人和自动驾驶汽车,以便在开阔的道路上以中等速度行驶。

语言

语言是按照惯例具有意义的符号系统。从这个意义上说,语言不必局限于口语。例如,交通标志形成了一种迷你语言,在一些国家,这是一个惯例问题,⚠意思是“前方危险”。语言的独特之处在于,语言单位按照惯例具有意义,而语言意义与所谓的自然意义有很大不同,例如“那些云意味着下雨”和“压力下降意味着阀门出现故障”等陈述。

与鸟叫声和交通标志相比,成熟的人类语言的一个重要特征是它们的生产力。一种富有成效的语言可以形成无限种类的句子。

像 ChatGPT 这样的大型语言模型可以用人类语言流利地回答问题和陈述。尽管这些模型实际上并不像人类那样理解语言,而只是选择比其他模型更有可能的单词,但它们已经达到了与正常人无法区分的语言的程度。那么,如果即使是一台使用像母语为母语的人一样的语言的计算机也不被承认理解,那么真正的理解涉及什么呢?对于这个难题,没有普遍商定的答案。

人工智能的方法和目标

符号主义与联结主义方法

人工智能研究遵循两种截然不同的方法,在某种程度上是相互竞争的,即符号(或“自上而下”)方法和连接主义(或“自下而上”)方法。自上而下的方法试图通过分析独立于大脑生物结构的认知来复制智能,即符号标签的处理。另一方面,自下而上的方法涉及模仿大脑结构创建人工神经网络,这就是联结主义的标签。

为了说明这些方法之间的区别,请考虑构建一个配备光学扫描仪的系统的任务,该系统可以识别字母表中的字母。自下而上的方法通常涉及通过逐个向人工神经网络呈现字母来训练人工神经网络,通过“调整”网络来逐步提高性能。(调整调整不同神经通路对不同刺激的反应性。相比之下,自上而下的方法通常涉及编写一个计算机程序,将每个字母与几何描述进行比较。简单地说,神经活动是自下而上方法的基础,而符号描述是自上而下方法的基础。

在《学习基础》(The Fundamentals of Learning,1932)一书中,纽约市哥伦比亚大学的心理学家爱德华·桑代克(Edward Thorndike)首次提出,人类的学习由大脑神经元之间连接的一些未知属性组成。 在《行为的组织》(1949)中,加拿大蒙特利尔麦吉尔大学的心理学家唐纳德·赫布(Donald Hebb)提出,学习具体涉及通过增加相关连接之间诱导神经元放电的概率(权重)来加强某些神经活动模式。加权连接的概念将在后面的“联结主义”一节中描述。

1957年,符号人工智能的两位积极倡导者——加利福尼亚州圣莫尼卡兰德公司的研究员艾伦·纽厄尔(Allen Newell)和宾夕法尼亚州匹兹堡卡内基梅隆大学的心理学家和计算机科学家赫伯特·西蒙(Herbert Simon)——总结了自上而下的方法,他们称之为物理符号系统假说。该假设指出,原则上,符号的处理结构足以在数字计算机中产生人工智能,而且,人类智能是相同类型的符号操作的结果。

在 1950 年代和 60 年代,自上而下和自下而上的方法同时进行,两者都取得了值得注意的成果,尽管有限。然而,在 1970 年代,自下而上的人工智能被忽视了,直到 1980 年代,这种方法才再次变得突出。如今,这两种方法都被遵循,并且都被认为面临困难。符号技术在简化的领域中起作用,但在面对现实世界时通常会崩溃;与此同时,自下而上的研究人员甚至无法复制最简单的生物的神经系统。秀丽隐杆线虫是一种经过大量研究的蠕虫,它有大约 300 个神经元,其相互连接的模式是完全已知的。然而,连接主义模型甚至无法模仿这种蠕虫。显然,联结主义理论的神经元是对真实事物的严重过度简化。

通用人工智能 (AGI)、应用人工智能和认知模拟

采用上述方法,人工智能研究试图实现三个目标之一:通用人工智能 (AGI)、应用人工智能或认知模拟。AGI(也称为强人工智能)旨在构建会思考的机器。AGI的最终目标是生产出一种整体智力与人类无法区分的机器。正如人工智能的早期里程碑部分所描述的那样,这一目标在1950年代和60年代引起了极大的兴趣,但这种乐观情绪已经让位于对所涉及的极端困难的理解。迄今为止,进展甚微。一些批评者怀疑,在可预见的未来,研究是否能产生一个具有蚂蚁整体智力能力的系统。事实上,在人工智能其他两个分支工作的一些研究人员认为AGI不值得追求。

应用人工智能,也称为高级信息处理,旨在产生商业上可行的“智能”系统,例如“专家”医疗诊断系统和股票交易系统。应用人工智能已经取得了相当大的成功,如专家系统部分所述。

在认知模拟中,计算机用于测试关于人类思维如何运作的理论,例如,关于人们如何识别人脸或回忆记忆的理论。认知模拟已经是神经科学和认知心理学的有力工具。

艾伦·图灵(Alan Turing)和人工智能的开端

理论工作

艾伦·图灵

艾伦·图灵,约1930年代。

人工智能领域最早的实质性工作是在20世纪中叶由英国逻辑学家和计算机先驱艾伦·马蒂森·图灵完成的。1935年,图灵描述了一种抽象的计算机,它由无限的内存和一个扫描仪组成,扫描仪在内存中来回移动,一个符号一个符号,读取它找到的东西并写入更多的符号。扫描仪的动作由指令程序决定,该指令程序也以符号的形式存储在存储器中。这是图灵的存储程序概念,其中隐含着机器在自己的程序上运行并因此修改或改进自己的程序的可能性。图灵的概念现在简称为通用图灵机。所有现代计

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

之乎者也·

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值