目录
大并发/大数据的软件有如下特点
-
用户多,分布广泛
-
大流量,高并发
-
从小到大,渐进发展
-
以用户为中心
-
海量数据,服务高可用
-
安全环境恶劣,易受网络攻击
-
功能多,变更快,频繁发布
大并发/大数据的架构目标有如下几个
-
高性能:提供快速的访问体验。
-
高可用:网站服务一直可以正常访问。
-
可伸缩:通过硬件增加/减少,提高/降低处理能力。
-
扩展性:方便地通过新增/移除方式,增加/减少新的功能/模块。
-
安全性:提供网站安全访问和数据加密、安全存储等策略。
-
敏捷性:随需应变,快速响应。
大并发/大数据的设计思路与原则
1.演进原则
优秀的架构和产品都是一步一步迭代出来的,用户量的不断增大,业务的扩展进行不断地迭代升级,最终演化成优秀的架构。
-
早期项目,由于团队规模有限,技术经验不足,往往使用一个简单的单体架构、单节点DB。
-
随着流量增加和业务演变,需要不断修正系统架构中的问题点,基于后面的几个原则,一点一点的进行系统演进
演进原则:高并发/大数据系统的演进是循序渐进的,以在高并发、大数据场景下不断优化用户体验为目标。
2.单一职责( Single Responsibility Principle)原则
定义:对一个类而言,应该仅有一个引起它变化的原因。
说明:一个类应该是相关性很高的封装,类只实现一个功能。
很多的时候,我们代码中有大量的上帝类,所谓上帝类,
把不应该是一个类的功能也往自己身上揽,大包大揽,导致内聚性就会很差,
内聚性差将导致代码很难被复用,不能复用,只能复制(Repeat Yourself),其结果就是一团乱麻。
3.开闭原则(Open Closed Principle)
定义:软件中的对象应该对于扩展是开放的,对于修改是关闭的。面对新需求,对程序的改动应该是通过增加代码实现的,而不是修改现有代码来实现。
说明:当软件需要变化时,我们尽可能的通过扩展的方式来实现变化,
比如通过继承,通过装饰者模式来增加新的功能,而不是通过修改已有的接口来实现,一旦修改接口,上层调用的地方均需要修改。
开闭原则是面向对象设计的核心所在,遵循开闭原则的最好手段就是抽象。
防止变异(Protected Variations)
问题:如何设计对象,子系统和系统,使其内部的变化或不稳定性不会对其他元素产生不良影响?
解决方案:分离变与不变, 识别变化或不稳定的地方,抽象出稳定的接口。
开发人员应该仅对程序中频繁出现变化的那些部分做出抽象,如果对于应用程序中每个部分都做刻意的抽象并不是个好主意。
拒绝不成熟的抽象和抽象本身一样重要。
4.高内聚低耦合/迪米特原则(Law of Demeter)
定义:
-
如果两个类不必彼此直接通信,那么这两个类就不应当发生直接的互相引用。
-
如果中间一个类需要调用另一个类的某一个方法,可以通过第三者转发这个调用。
一个对象应该对其他对象有最少的了解。也被称为最少知识原则。
该原则首先强调的是在类的结构设计上,应该尽可能低的设计成员的访问权限。
其根本思想是强调了类的松耦合,类之间的耦合越弱,越有利于复用,一个处在弱耦合的类被修改,不会波及有关系的类。
也就是说,一个类应该对自己需要耦合或调用的类知道的最少,类与类之间的关系越密切,耦合度越大,那么类的变化对其耦合的类的影响也会越大,这也是我们面向对象设计的核心原则:低耦合,高内聚。
什么是直接的朋友?
每个对象都必然与其他对象有耦合关系,两个对象的耦合就成为朋友关系,这种关系的类型很多,例如组合、聚合、依赖、关联等。
其中,我们称出现成员变量、方法参数、方法返回值中的类为直接的朋友,而出现在局部变量中的类