OneEE: A One-Stage Framework for Fast Overlapping and Nested Event Extraction

论文:https://arxiv.org/pdf/2209.02693.pdf
代码:https://github.com/Cao-Hu/OneEE
期刊/会议:COLING 2022
摘要
事件抽取(EE)是信息抽取的基本任务,旨在从非结构化文本中抽取结构化事件信息。大多数先前的工作集中于抽取平面事件,而忽略了重叠或嵌套的事件。一些用于重叠和嵌套EE的模型包括几个抽取事件触发词和论元的连续阶段,这些阶段会受到错误传播的影响。因此,我们设计了一个简单而有效的标注方案和模型来表述EE作为词-词关系识别,称为OneEE。通过并行网格标记,在一个阶段内同时识别触发词和论元词之间的关系,从而获得非常快的事件抽取速度。该模型采用自适应事件融合模块生成事件感知表示,采用距离感知预测器集成相对距离信息进行词-词关系识别,并通过实例验证了这两种机制的有效性。在3个重叠和嵌套的EE基准(即FewFC、Genia11和Genia13)上进行的实验表明,OneEE实现了最先进的(SoTA)结果。此外,在相同条件下,OneEE的推理速度比基线的推理速度快,由于支持并行推理,可以进一步大幅度提高推理速度。
1、简介
图1展示了现有事件抽取的情况,大致可以分为Flat Event,Overlapped Event,Nested Event三种。传统的方法常将EE看成序列标注任务,不能有效解决事件提及的重叠问题,如图1中的(b)所示,两个重叠的事件共享触发词acquired。图1中的©展示了嵌套事件的例子,其中Gene Expression事件是另一个Positive Regulation事件的Theme论元。

重叠和嵌套EE的前期研究(Yang et al, 2019;Li et al,2020)采用基于管道的方法,在几个连续的阶段抽取事件触发词和论元。最近,最先进的模型Sheng等人(2021)也使用了这样一种连续执行事件类型检测、触发词抽取和论元抽取的方法。这种方法的主要问题是后一阶段依赖于前一阶段,这固有地带来了误差传播问题。
为了解决上述问题,我们提出了一种新的标记方案,将重叠和嵌套的EE转换为词-词关系识别。如图2所示,我们设计了两种类型的关系,包括跨度关系(S-*)和角色关系(R-*)。S-*处理触发词和论元识别,表示两个单词是触发词(T)的头尾边界还是论元(a)的头尾边界。R-*处理论元角色分类,表示论元是否在事件中扮演“*”角色。

在此基础上,我们进一步提出了一个单阶段事件抽取模型,该模型主要包括三个部分。首先,它采用BERT (Devlin et al, 2019)作为编码器来获得上下文化的单词表示。然后,使用自适应事件融合层(由一个注意模块和两个门融合模块组成)获得每种事件类型的事件感知上下文表示。在预测层,我们通过计算距离感知分数,并行预测每对单词之间的跨度和角色关系。最后,可以在一个阶段中使用这些关系标签解码事件触发词、论元及其角色,而不会出现错误传播。
我们在3个重叠和嵌套的EE数据集上评估了OneEE (FewFC (Zhou et al, 2021), Genia11 (Kim et al, 2011)和Genia13),并进行了广泛的实验和分析。
- 我们设计了一种新的标记方案,将事件抽取转换为单词-单词关系识别任务,为重叠和嵌套的EE提供了一种新颖而简单的解决方案。
- 我们提出了OneEE,这是一个单阶段模型,可以有效地并行抽取重叠和嵌套EE的词-词关系。
- 我们进一步提出了自适应事件融合层,以获得事件感知的上下文表示,并有效地集成事件信息。
- OneEE在性能和推理速度方面都优于SoTA模型。
2、相关工作
2.1 事件抽取
传统的EE(即扁平或常规事件抽取)(Li et al, 2013; Nguyen et al, 2016; Liu et al, 2018; Sha et al, 2018; Nguyen and Nguyen, 2019)将EE制定为序列标记任务,为每个token分配标签(例如,BIO标记方案)。例如,Nguyen等人(2016)使用两个双向RNN来获得更丰富的表示,然后将其用于联合预测事件触发词和论元角色。Liu等人(2018)通过引入基于注意的GCN来对依赖图信息建模,联合抽取了多个事件触发词和论元(Fei et al, 2021b; Li et al, 2021a; Fei et al, 2022b)。然而,他们的基本假设,事件提及不相互重叠,并不总是有效的。不规则的EE(即重叠和嵌套的EE)并没有受到太多的关注,这更具有挑战性和现实意义。
现有的重叠和嵌套EE的方法(Yang et al, 2019; Li et al, 2020)以管道方式执行事件抽取,有几个步骤。为了解决论点重叠,Yang等人(2019)采用多组二元分类器,其中每个severs为一个角色检测特定于角色的论元范围,但无法解决触发词重叠。除了管道方法外,处理重叠EE的最新尝试是Sheng等人(2021)在级联解码的联合框架中。他们是第一个同时处理所有重叠模式的。Sheng等人(2021)依次执行类型检测、触发词抽取和论元抽取,其中重叠的目标根据特定的前一个预测分别抽取。然而,大多数多级方法都存在误差传播问题。
2.2 基于标记的信息抽取
标记方案在信息抽取领域得到了广泛的研究。传统的序列标记方法(例如BIO)很难处理不规则的信息抽取(例如重叠的NER)。一些研究人员(Zheng et al, 2017)扩展了BIO标签方案,以适应更复杂的场景。然而,由于有限的灵活性,它们受到标签歧义问题的困扰。近年来,网格标记方案由于其呈现词对之间关系的特点,被应用于许多信息抽取任务中,如意见挖掘(Wu et al, 2020)、关系抽取(Wang et al, 2020)和命名实体识别(Wang et al, 2021)。例如,TPLinker (Wang et al, 2020)通过用链接标签标记token对,实现了在训练和推理之间没有间隙的单阶段联合关系抽取。受这些工作的启发,我们设计了标签方案来解决重叠和嵌套的EE,它在一个阶段平行预测触发词或论元词之间的关系。
同样值得注意的是,这项工作继承了最近成功的词-词关系检测思想,如Li等人(2022b)。Li等人(2022b)提出用基于网格标注方案的词-词建模统一所有的NER(包括扁平提及、嵌套提及和不连续提及)。然而,这项工作与Li等人(2022b)在两个方面有所不同。首先,我们成功地将词-词标记的思想从NER扩展到EE,其中我们为嵌套和重叠的事件重新设计了两种关系类型。其次,从建模的角度,设计了自适应事件融合层,完全支持单阶段(端到端)复杂事件检测,极大地避免了错误的传播。
3、问题定义
事件抽取的目标包括抽取事件触发词及其论元。我们可以将重叠和嵌套EE形式化如下:给定一个由NNN个标记或单词组成的输入句子X={ x1,x2,…,xN}X = \{x_1, x_2,\ldots, x_N\}X={ x1,x2,…,xN}和事件类型e∈Ee∈\mathcal{E}e∈E,任务旨在抽取每个token对(xi,xj)(x_i, x_j)(xi,xj)之间的跨度关系S\mathcal{S}S和角色关系R\mathcal{R}R,其中E\mathcal{E}E表示事件类型集合,S\mathcal{S}S和R\mathcal{R}R为预定义标签。这些关系可以在下面解释,为了更好地理解,我们还提供了如图2所示的示例。
- S\mathcal{S}S: span关系表示xix_ixi和xjx_jxj是所抽取的触发词跨度S-T或论元跨度S-A的起始和结束标记,其中1≤i≤j≤N1≤i≤j≤N1≤i≤j≤N。
- R\mathcal{R}R:角色关系表示带有xjx_jxj的论元充当触发词包含xix_ixi的事件的某个角色R-*,其中1≤i,j≤n1≤i, j≤n1≤i,j≤n,*表示角色类型。
- NONE\text{NONE}NONE:表示该词对不存在本文定义的任何关系。
4、框架
我们的模型体系结构如图3所示,它主要由三个部分组成。首先,使用广泛使用的预训练语言模型BERT (Devlin et al, 2019)作为编码器,从输入句子中产生上下文化的单词表示。然后,采用自适应事件融合层(由一个注意力模块和两个门模块组成)将目标事件类型嵌入到上下文表示中;然后利用预测层联合抽取词对之间的跨度关系和角色关系。

4.1 编码层
我们利用BERT作为模型的编码器,因为它已被证明是EE中表示学习的SoTA模型之一。给定一个输入句子X={ x1,x2,…,xN}X = \{x_1, x_2,\ldots,x_N\}X={ x1,x2,…,xN},我们将每个token xix_ixi转换为单词块,然后将它们输入预训练的BERT模块。在BERT计算之后,每个句子词都可能涉及几个片段的向量表示。这里我们使用最大池化来生成单词表示H={ h1,h2,…,hN}∈RN×dhH = \{h_1, h_2,\ldots, h_N\}∈\mathbb{R}^{N×d_h}H={ h1,h2,…,hN}

OneEE是一个针对重叠和嵌套事件抽取的单阶段模型,通过词-词关系识别解决事件抽取问题。模型采用BERT编码器、自适应事件融合层和距离感知预测器,有效避免错误传播,提高推理速度和准确性,在多个基准数据集上实现最先进的结果。
最低0.47元/天 解锁文章
1672

被折叠的 条评论
为什么被折叠?



