关于直线上,两端相向出发相遇的问题。
甲乙两人分别从A、B两地出发,相向而行,都是匀速,相遇后继续向之前的目的地行进,到达目的地后立即返回。每次相遇都是迎面相遇,假设前几次相遇情况如下:
设第一次相遇时经历的时间为T
第几次相遇 | 从上次相遇到这次相遇甲走过的路程 | 从上次相遇到这次相遇乙走过的路程 | 从上次相遇到这次相遇经过的时间 | 将A位置看作零,相遇的位置 |
---|---|---|---|---|
1 | V甲·T | V乙·T | T | V甲·T |
2 | V甲·2T | V乙·2T | 2T | V乙·2T -V甲·T |
3 | V甲·2T | V乙·2T | 2T | V甲·3T -V乙·2T |
4 | V甲·2T | V乙·2T | 2T | V乙·4T -V乙·3T |
2n | V甲·2T | V乙·2T | 2T | V乙·2nT -V甲·(2n-1)T |
2n+1 | V甲·2T | V乙·2T | 2T | V甲·(2n+1)T -V乙·2nT |