关于两端直线出发相遇问题的理解

设AB两点之间是直线相距 S S S,甲乙两人分别从A、B两点出发匀速做往返运动,设甲的速度为 x V xV xV x > 1 x > 1 x>1,即甲的速度比乙的速度大),乙的速度为 V V V

  • 第一次相遇肯定是迎面相遇,设第一次相遇的点为 C C C
    在这里插入图片描述

第一次相遇时间为:
T = S ( x + 1 ) V T = \frac{S}{(x+1)V} T=(x+1)VS
根据相同时间内速度之比等于路程之比,且二者总和是S,所以相遇时:

  • 甲距 A 点的距离为:
    A C = x S x + 1 AC= \frac{xS}{x+1} AC=x+1xS

  • 乙距 B 点的距离为:
    B C = S x + 1 BC= \frac{S}{x+1} BC=x+1S

  • 甲到达 B 点所需时间为:
    t 2 = S ( x + 1 ) x V t_2 = \frac{S}{(x+1)xV} t2=(x+1)xVS
    在这里插入图片描述

    此时,乙距 A 点的剩余距离为:
    A C − t 2 ⋅ V 乙 = x S x + 1 − S ( x + 1 ) x V ⋅ V = S ( x − 1 ) x AC-t_2·V_乙=\frac{xS}{x+1}- \frac{S}{(x+1)xV}·V=\frac{S(x-1)}{x} ACt2V=x+1xS(x+1)xVSV=xS(x1)
    乙到达 A 点需要的时间为 t 3 t_3 t3
    t 3 = S ( x − 1 ) x V t_3 = \frac{S(x-1)}{xV} t3=xVS(x1)

    甲能否在乙到达 A 前追上乙?

    • 甲从 B 返回时,两人相距:
      S x \frac{S}{x} xS
    • 甲的速度为 x V xV xV,乙的速度为 V V V,相对速度为:
      ( x − 1 ) V (x-1)V (x1)V
  • 追上所需时间
    甲追上乙所需时间为:
    t 3 ′ = S x ( x − 1 ) V = S x ( x − 1 ) V {t_3}' = \frac{\frac{S}{x}}{(x-1)V} = \frac{S}{x(x-1)V} t3=(x1)VxS=x(x1)VS

  • 比较 t 3 ′ {t_3}' t3 t 3 t_3 t3
    比较甲追上乙的时间 t 3 ′ {t_3}' t3 与乙到达 A 点所需时间 t 3 t_3 t3
    t 3 ′ = S x ( x − 1 ) V , t 3 = S ( x − 1 ) x V {t_3}'= \frac{S}{x(x-1)V}, \quad t_3 = \frac{S(x-1)}{xV} t3=x(x1)VS,t3=xVS(x1)
    若:
    S x ( x − 1 ) V < S ( x − 1 ) x V \frac{S}{x(x-1)V} < \frac{S(x-1)}{xV} x(x1)VS<xVS(x1)
    化简得:
    x > 2 x > 2 x>2

  • 结论
  1. 乙在到达 A 前被追上的条件(追及相遇)
  • 条件 x > 2 x > 2 x>2
  1. 未被追上时第二次相遇的类型
  • x = 2 x = 2 x=2: 端点追及相遇。

  • x < 2 x < 2 x<2: 乙到达 A 后返回,与甲迎面相遇。

举例子用数代入看看
例1:设 L A B = 12 m L_{AB}=12m LAB=12m, V 甲 = 9 m / s V_甲=9m/s V=9m/s, V 乙 = 3 m / s V_乙=3m/s V=3m/s,此时 x > 2 x >2 x>2
①t1 :第一次相遇的时间:
t 1 = L A B V 甲 + V 乙 = 12 9 + 3 = 1 s t_1 = \frac{L_{AB}}{V_甲 + V_乙} = \frac{12}{9+3}=1s t1=V+VLAB=9+312=1s
此时甲走了 9 m 9m 9m,第一次相遇的点记为 C C C, L A C = 9 m , L B C = 3 m L_{AC}=9m,L_{BC}=3m LAC=9mLBC=3m

②t2 :从第一次相遇到甲到达B地的时间
t 2 = L B C V 甲 = 3 9 = 1 3 s t_2 = \frac{L_{BC}}{V_甲} = \frac{3}{9}=\frac{1}{3}s t2=VLBC=93=31s
在这 1 3 s \frac{1}{3}s 31s内乙又向A走了 1 3 × V 乙 = 1 m \frac{1}{3}×V_{乙}=1m 31×V=1m
此时乙离到A还有: 12 − 3 − 1 = 8 m 12-3-1=8m 1231=8m,
③ 如果能追上,那么甲追上乙所需时间为:
t 3 ′ = S x ( x − 1 ) V = S x ( x − 1 ) V = 12 3 × 2 × 3 = 2 3 s {t_3}' = \frac{\frac{S}{x}}{(x-1)V} = \frac{S}{x(x-1)V}= \frac{12}{3×2×3}=\frac{2}{3}s t3=(x1)VxS=x(x1)VS=3×2×312=32s
而乙到A地还需要花的时间 t 3 = 8 V 乙 = 8 3 s t_3 = \frac{8}{V_乙} = \frac{8}{3}s t3=V8=38s
2 3 < 8 3 \frac{2}{3} < \frac{8}{3} 32<38
所以 2 3 s \frac{2}{3}s 32s时甲追上了乙,乙的路程为 2 3 × V 乙 = 2 m \frac{2}{3}×V_{乙}=2m 32×V=2m,甲的路程为
2 3 × V 甲 = 6 m \frac{2}{3}×V_{甲}=6m 32×V=6m
这是第二次相遇。
在这里插入图片描述
符合当 x > 2 x >2 x>2 时,甲在乙到达 A 前追上乙(追及相遇)

例2:设 L A B = 12 m L_{AB}=12m LAB=12m, V 甲 = 8 m / s V_甲=8m/s V=8m/s, V 乙 = 4 m / s V_乙=4m/s V=4m/s,此时 x = 2 x =2 x=2
①t1 :第一次相遇的时间:
t 1 = L A B V 甲 + V 乙 = 12 8 + 4 = 1 s t_1 = \frac{L_{AB}}{V_甲 + V_乙} = \frac{12}{8+4}=1s t1=V+VLAB=8+412=1s
此时甲走了 8 m 8m 8m,第一次相遇的点记为 C C C, L A C = 8 m , L B C = 4 m L_{AC}=8m,L_{BC}=4m LAC=8mLBC=4m
②t2 :从第一次相遇到甲到达B地的时间
t 2 = L B C V 甲 = 4 8 = 0.5 s t_2 = \frac{L_{BC}}{V_甲} = \frac{4}{8}=0.5s t2=VLBC=84=0.5s
在这 0.5 s 0.5s 0.5s内乙又向A走了 0.5 × V 乙 = 2 m 0.5×V_{乙}=2m 0.5×V=2m
此时乙离到A还有: 8 − 2 = 6 m 8-2=6m 82=6m,
③ 如果能追上,那么甲追上乙所需时间为:
t 3 ′ = S x ( x − 1 ) V = S x ( x − 1 ) V = 12 2 × 1 × 4 = 3 2 s {t_3}' = \frac{\frac{S}{x}}{(x-1)V} = \frac{S}{x(x-1)V}= \frac{12}{2×1×4}=\frac{3}{2}s t3=(x1)VxS=x(x1)VS=2×1×412=23s
而乙到A地还需要花的时间 t 3 = 6 V 乙 = 3 2 s t_3 = \frac{6}{V_乙} = \frac{3}{2}s t3=V6=23s
2 3 < 8 3 \frac{2}{3} < \frac{8}{3} 32<38
所以 3 2 s \frac{3}{2}s 23s时在A地甲追上了乙,乙的路程为 3 2 × V 乙 = 6 m \frac{3}{2}×V_{乙}=6m 23×V=6m,甲的路程为
3 2 × V 甲 = 12 m \frac{3}{2}×V_{甲}=12m 23×V=12m
这是第二次相遇。
在这里插入图片描述
符合 x = 2 x = 2 x=2: 端点追及相遇

例3:设 L A B = 10 m L_{AB}=10m LAB=10m, V 甲 = 6 m / s V_甲=6m/s V=6m/s, V 乙 = 4 m / s V_乙=4m/s V=4m/s,此时 x = 1.5 < 2 x =1.5 < 2 x=1.5<2
①t1 :第一次相遇的时间:
t 1 = L A B V 甲 + V 乙 = 10 6 + 4 = 1 s t_1 = \frac{L_{AB}}{V_甲 + V_乙} = \frac{10}{6+4}=1s t1=V+VLAB=6+410=1s
此时甲走了 6 m 6m 6m,第一次相遇的点记为 C C C, L A C = 6 m , L B C = 4 m L_{AC}=6m,L_{BC}=4m LAC=6mLBC=4m
②t2 :从第一次相遇到甲到达B地的时间
t 2 = L B C V 甲 = 4 6 s = 2 3 s t_2 = \frac{L_{BC}}{V_甲} = \frac{4}{6}s=\frac{2}{3}s t2=VLBC=64s=32s
在这 2 3 s \frac{2}{3}s 32s内乙又向A走了 2 3 × V 乙 = 8 3 m \frac{2}{3}×V_{乙}=\frac{8}{3}m 32×V=38m
此时乙离到A还有: 6 − 8 3 = 10 3 m 6-\frac{8}{3}=\frac{10}{3}m 638=310m,
③ 如果能追上,那么甲追上乙所需时间为:
t 3 ′ = S x ( x − 1 ) V = S x ( x − 1 ) V = 10 1.5 × 0.5 × 4 s = 3 s {t_3}' = \frac{\frac{S}{x}}{(x-1)V} = \frac{S}{x(x-1)V}= \frac{10}{1.5×0.5×4}s=3s t3=(x1)VxS=x(x1)VS=1.5×0.5×410s=3s
而乙到A地还需要花的时间 t 3 = 10 3 × V 乙 = 5 6 s t_3 = \frac{10}{3×V_乙} = \frac{5}{6}s t3=3×V10=65s
3 > 5 6 3> \frac{5}{6} 3>65
所以这一段没追上,乙到A地还需要花的时间 t 3 = 10 3 × V 乙 = 5 6 s t_3 = \frac{10}{3×V_乙} = \frac{5}{6}s t3=3×V10=65s,这段时间内,甲走了 5 6 × V 甲 = 5 m \frac{5}{6}×V_{甲}=5m 65×V=5m,接着乙返回,二者迎面相遇这是第二次迎面相遇的时间
t 4 = L A B − 5 V 甲 + V 乙 = 5 6 + 4 = 0.5 s t_4 = \frac{L_{AB}-5}{V_甲 + V_乙} = \frac{5}{6+4}=0.5s t4=V+VLAB5=6+45=0.5s
这是第二次相遇。
在这里插入图片描述
符合当 x < 2 x < 2 x<2, 乙到达 A 后返回,与甲迎面相遇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值