设AB两点之间是直线相距 S S S,甲乙两人分别从A、B两点出发匀速做往返运动,设甲的速度为 x V xV xV( x > 1 x > 1 x>1,即甲的速度比乙的速度大),乙的速度为 V V V。
- 第一次相遇肯定是迎面相遇,设第一次相遇的点为
C
C
C
第一次相遇时间为:
T
=
S
(
x
+
1
)
V
T = \frac{S}{(x+1)V}
T=(x+1)VS
根据相同时间内速度之比等于路程之比,且二者总和是S,所以相遇时:
-
甲距 A 点的距离为:
A C = x S x + 1 AC= \frac{xS}{x+1} AC=x+1xS -
乙距 B 点的距离为:
B C = S x + 1 BC= \frac{S}{x+1} BC=x+1S -
甲到达 B 点所需时间为:
t 2 = S ( x + 1 ) x V t_2 = \frac{S}{(x+1)xV} t2=(x+1)xVS
此时,乙距 A 点的剩余距离为:
A C − t 2 ⋅ V 乙 = x S x + 1 − S ( x + 1 ) x V ⋅ V = S ( x − 1 ) x AC-t_2·V_乙=\frac{xS}{x+1}- \frac{S}{(x+1)xV}·V=\frac{S(x-1)}{x} AC−t2⋅V乙=x+1xS−(x+1)xVS⋅V=xS(x−1)
乙到达 A 点需要的时间为 t 3 t_3 t3:
t 3 = S ( x − 1 ) x V t_3 = \frac{S(x-1)}{xV} t3=xVS(x−1)甲能否在乙到达 A 前追上乙?
- 甲从 B 返回时,两人相距:
S x \frac{S}{x} xS - 甲的速度为
x
V
xV
xV,乙的速度为
V
V
V,相对速度为:
( x − 1 ) V (x-1)V (x−1)V
- 甲从 B 返回时,两人相距:
-
追上所需时间:
甲追上乙所需时间为:
t 3 ′ = S x ( x − 1 ) V = S x ( x − 1 ) V {t_3}' = \frac{\frac{S}{x}}{(x-1)V} = \frac{S}{x(x-1)V} t3′=(x−1)VxS=x(x−1)VS -
比较 t 3 ′ {t_3}' t3′ 和 t 3 t_3 t3:
比较甲追上乙的时间 t 3 ′ {t_3}' t3′ 与乙到达 A 点所需时间 t 3 t_3 t3:
t 3 ′ = S x ( x − 1 ) V , t 3 = S ( x − 1 ) x V {t_3}'= \frac{S}{x(x-1)V}, \quad t_3 = \frac{S(x-1)}{xV} t3′=x(x−1)VS,t3=xVS(x−1)
若:
S x ( x − 1 ) V < S ( x − 1 ) x V \frac{S}{x(x-1)V} < \frac{S(x-1)}{xV} x(x−1)VS<xVS(x−1)
化简得:
x > 2 x > 2 x>2
- 结论:
- 乙在到达 A 前被追上的条件(追及相遇)
- 条件: x > 2 x > 2 x>2
- 未被追上时第二次相遇的类型
当 x = 2 x = 2 x=2: 端点追及相遇。
当 x < 2 x < 2 x<2: 乙到达 A 后返回,与甲迎面相遇。
举例子用数代入看看
例1:设
L
A
B
=
12
m
L_{AB}=12m
LAB=12m,
V
甲
=
9
m
/
s
V_甲=9m/s
V甲=9m/s,
V
乙
=
3
m
/
s
V_乙=3m/s
V乙=3m/s,此时
x
>
2
x >2
x>2
①t1 :第一次相遇的时间:
t
1
=
L
A
B
V
甲
+
V
乙
=
12
9
+
3
=
1
s
t_1 = \frac{L_{AB}}{V_甲 + V_乙} = \frac{12}{9+3}=1s
t1=V甲+V乙LAB=9+312=1s
此时甲走了
9
m
9m
9m,第一次相遇的点记为
C
C
C,
L
A
C
=
9
m
,
L
B
C
=
3
m
L_{AC}=9m,L_{BC}=3m
LAC=9m,LBC=3m
②t2 :从第一次相遇到甲到达B地的时间
t
2
=
L
B
C
V
甲
=
3
9
=
1
3
s
t_2 = \frac{L_{BC}}{V_甲} = \frac{3}{9}=\frac{1}{3}s
t2=V甲LBC=93=31s
在这
1
3
s
\frac{1}{3}s
31s内乙又向A走了
1
3
×
V
乙
=
1
m
\frac{1}{3}×V_{乙}=1m
31×V乙=1m
此时乙离到A还有:
12
−
3
−
1
=
8
m
12-3-1=8m
12−3−1=8m,
③ 如果能追上,那么甲追上乙所需时间为:
t
3
′
=
S
x
(
x
−
1
)
V
=
S
x
(
x
−
1
)
V
=
12
3
×
2
×
3
=
2
3
s
{t_3}' = \frac{\frac{S}{x}}{(x-1)V} = \frac{S}{x(x-1)V}= \frac{12}{3×2×3}=\frac{2}{3}s
t3′=(x−1)VxS=x(x−1)VS=3×2×312=32s
而乙到A地还需要花的时间
t
3
=
8
V
乙
=
8
3
s
t_3 = \frac{8}{V_乙} = \frac{8}{3}s
t3=V乙8=38s
2
3
<
8
3
\frac{2}{3} < \frac{8}{3}
32<38
所以
2
3
s
\frac{2}{3}s
32s时甲追上了乙,乙的路程为
2
3
×
V
乙
=
2
m
\frac{2}{3}×V_{乙}=2m
32×V乙=2m,甲的路程为
2
3
×
V
甲
=
6
m
\frac{2}{3}×V_{甲}=6m
32×V甲=6m
这是第二次相遇。
符合当
x
>
2
x >2
x>2 时,甲在乙到达 A 前追上乙(追及相遇)
例2:设
L
A
B
=
12
m
L_{AB}=12m
LAB=12m,
V
甲
=
8
m
/
s
V_甲=8m/s
V甲=8m/s,
V
乙
=
4
m
/
s
V_乙=4m/s
V乙=4m/s,此时
x
=
2
x =2
x=2
①t1 :第一次相遇的时间:
t
1
=
L
A
B
V
甲
+
V
乙
=
12
8
+
4
=
1
s
t_1 = \frac{L_{AB}}{V_甲 + V_乙} = \frac{12}{8+4}=1s
t1=V甲+V乙LAB=8+412=1s
此时甲走了
8
m
8m
8m,第一次相遇的点记为
C
C
C,
L
A
C
=
8
m
,
L
B
C
=
4
m
L_{AC}=8m,L_{BC}=4m
LAC=8m,LBC=4m
②t2 :从第一次相遇到甲到达B地的时间
t
2
=
L
B
C
V
甲
=
4
8
=
0.5
s
t_2 = \frac{L_{BC}}{V_甲} = \frac{4}{8}=0.5s
t2=V甲LBC=84=0.5s
在这
0.5
s
0.5s
0.5s内乙又向A走了
0.5
×
V
乙
=
2
m
0.5×V_{乙}=2m
0.5×V乙=2m
此时乙离到A还有:
8
−
2
=
6
m
8-2=6m
8−2=6m,
③ 如果能追上,那么甲追上乙所需时间为:
t
3
′
=
S
x
(
x
−
1
)
V
=
S
x
(
x
−
1
)
V
=
12
2
×
1
×
4
=
3
2
s
{t_3}' = \frac{\frac{S}{x}}{(x-1)V} = \frac{S}{x(x-1)V}= \frac{12}{2×1×4}=\frac{3}{2}s
t3′=(x−1)VxS=x(x−1)VS=2×1×412=23s
而乙到A地还需要花的时间
t
3
=
6
V
乙
=
3
2
s
t_3 = \frac{6}{V_乙} = \frac{3}{2}s
t3=V乙6=23s
2
3
<
8
3
\frac{2}{3} < \frac{8}{3}
32<38
所以
3
2
s
\frac{3}{2}s
23s时在A地甲追上了乙,乙的路程为
3
2
×
V
乙
=
6
m
\frac{3}{2}×V_{乙}=6m
23×V乙=6m,甲的路程为
3
2
×
V
甲
=
12
m
\frac{3}{2}×V_{甲}=12m
23×V甲=12m
这是第二次相遇。
符合当
x
=
2
x = 2
x=2: 端点追及相遇
例3:设
L
A
B
=
10
m
L_{AB}=10m
LAB=10m,
V
甲
=
6
m
/
s
V_甲=6m/s
V甲=6m/s,
V
乙
=
4
m
/
s
V_乙=4m/s
V乙=4m/s,此时
x
=
1.5
<
2
x =1.5 < 2
x=1.5<2
①t1 :第一次相遇的时间:
t
1
=
L
A
B
V
甲
+
V
乙
=
10
6
+
4
=
1
s
t_1 = \frac{L_{AB}}{V_甲 + V_乙} = \frac{10}{6+4}=1s
t1=V甲+V乙LAB=6+410=1s
此时甲走了
6
m
6m
6m,第一次相遇的点记为
C
C
C,
L
A
C
=
6
m
,
L
B
C
=
4
m
L_{AC}=6m,L_{BC}=4m
LAC=6m,LBC=4m
②t2 :从第一次相遇到甲到达B地的时间
t
2
=
L
B
C
V
甲
=
4
6
s
=
2
3
s
t_2 = \frac{L_{BC}}{V_甲} = \frac{4}{6}s=\frac{2}{3}s
t2=V甲LBC=64s=32s
在这
2
3
s
\frac{2}{3}s
32s内乙又向A走了
2
3
×
V
乙
=
8
3
m
\frac{2}{3}×V_{乙}=\frac{8}{3}m
32×V乙=38m
此时乙离到A还有:
6
−
8
3
=
10
3
m
6-\frac{8}{3}=\frac{10}{3}m
6−38=310m,
③ 如果能追上,那么甲追上乙所需时间为:
t
3
′
=
S
x
(
x
−
1
)
V
=
S
x
(
x
−
1
)
V
=
10
1.5
×
0.5
×
4
s
=
3
s
{t_3}' = \frac{\frac{S}{x}}{(x-1)V} = \frac{S}{x(x-1)V}= \frac{10}{1.5×0.5×4}s=3s
t3′=(x−1)VxS=x(x−1)VS=1.5×0.5×410s=3s
而乙到A地还需要花的时间
t
3
=
10
3
×
V
乙
=
5
6
s
t_3 = \frac{10}{3×V_乙} = \frac{5}{6}s
t3=3×V乙10=65s
3
>
5
6
3> \frac{5}{6}
3>65
所以这一段没追上,乙到A地还需要花的时间
t
3
=
10
3
×
V
乙
=
5
6
s
t_3 = \frac{10}{3×V_乙} = \frac{5}{6}s
t3=3×V乙10=65s,这段时间内,甲走了
5
6
×
V
甲
=
5
m
\frac{5}{6}×V_{甲}=5m
65×V甲=5m,接着乙返回,二者迎面相遇这是第二次迎面相遇的时间
t
4
=
L
A
B
−
5
V
甲
+
V
乙
=
5
6
+
4
=
0.5
s
t_4 = \frac{L_{AB}-5}{V_甲 + V_乙} = \frac{5}{6+4}=0.5s
t4=V甲+V乙LAB−5=6+45=0.5s
这是第二次相遇。
符合当
x
<
2
x < 2
x<2, 乙到达 A 后返回,与甲迎面相遇