正弦级数和余弦级数

在数学分析的级数理论中,有一类常见的题目,其中涉及到
cosθ+cos2θ+⋯+cosnθ(1)


sinθ+sin2θ+⋯+sinnθ(2)

之类的正弦或者余弦级数的求和,主要是证明该和式有界。而为了证明这一点,通常是把和式的通项求出来。当然,该级数在物理中也有重要作用,它表示n个相同振子的合振幅。在我们的数学分析教材中,通常是将级数乘上一项sinθ2,然后利用积化和差公式完成。诚然,如果仅限在实数范围内考虑,这有可能是唯一的推导技巧的。但是这样推导的运算过程本身不简单,而且也不利于记忆,在大二的时候我就为此感到很痛苦。前几天在看费曼的书的时候,想到了一种利用复数的推导技巧。很奇怪,这个技巧是如此简单——写出来显得这篇文章都有点水了——可是我以前居然一直没留意到!看来功力尚浅,需多多修炼呀。
有时候,一次性计算更多的东西,往往比单一计算一部分更加快捷,让我们同时来考虑(1)和(2),我们计算
cosθ+cos2θ+⋯+cosnθ+i(sinθ+sin2θ+⋯+sinnθ)

利用欧拉公式,上式也就是
eiθ+e2iθ+⋯+eniθ

这只是等比级数求和!易得
eiθ(eniθ−1eiθ−1)=e(n+1)iθ/2(eniθ/2−e−niθ/2eiθ/2−e−iθ/2)

括号里的结果也就是
sinnθ2sinθ2

所以总的结果也就是
(cos(n+1)θ2+isin(n+1)θ2)sinnθ2sinθ2

根据实部和虚部相等的原则,就有
cosθ+cos2θ+⋯+cosnθ=cos(n+1)θ2sinnθ2sinθ2


sinθ+sin2θ+⋯+sinnθ=sin(n+1)θ2sinnθ2sinθ2
整个过程多么简洁,几乎一气呵成。里边也不是什么精湛神秘的技巧,所以特别奇怪,怎么我现在才注意到?

类似地,也可以得出
cos(ω+θ)+cos(ω+2θ)+⋯+cos(ω+nθ)

的求和公式(仅仅是多乘了一个相位因子~~)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值