Fourier级数

Fourier级数

函数的Fourier级数的展开

Euler–Fourier公式

我们探讨这样一个问题:
假设 f ( x ) = a 0 2 + ∑ n = 1 ∞ a k c o s k t + b k s i n k t f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}a_{k}coskt+b_{k}sinkt f(x)=2a0+n=1akcoskt+bksinkt

Euler–Fourier公式:

a 0 = 1 π ∫ − π π f ( x ) d x a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx a0=π1ππf(x)dx
a n = 1 π ∫ − π π f ( x ) cos ⁡ n x d x , n = 0 , 1 , 2 , ⋯ a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x \mathrm{d} x, \quad n=0,1,2, \cdots an=π1ππf(x)cosnxdx,n=0,1,2,
b n = 1 π ∫ − x π f ( x ) sin ⁡ n x d x , n = 1 , 2 , ⋯ b_{n}=\frac{1}{\pi} \int_{-x}^{\pi} f(x) \sin n x \mathrm{d} x, \quad n=1,2, \cdots bn=π1xπf(x)sinnxdx,n=1,2,
∫ − π π c o s m x = 0 \int_{-\pi}^{\pi}cosmx=0 ππcosmx=0
∫ − π π s i n m x = 0 \int_{-\pi}^{\pi}sinmx=0 ππsinmx=0
∫ − π π s i n n x c o s m x = 0 \int_{-\pi}^{\pi}sinnxcosmx=0 ππsinnxcosmx=0
∫ − π π c o s n x c o s m x = 0 ( n ≠ m ) \int_{-\pi}^{\pi}cosnxcosmx=0(n \neq m) ππcosnxcosmx=0(n=m)
∫ − π π c o s n x c o s m x = π ( n = m ) \int_{-\pi}^{\pi}cosnxcosmx=\pi(n = m) ππcosnxcosmx=π(n=m)(n=m时,cos0x=1, → 1 2 ∫ − π π 1 d x \rightarrow \frac{1}{2} \int_{-\pi}^{\pi}1dx 21ππ1dx)
∫ − π π s i n n x c o s m x = π ( n = m ) \int_{-\pi}^{\pi}sinnxcosmx=\pi(n = m) ππsinnxcosmx=π(n=m)
利用三角公式:
c o s m t c o s n t = 1 2 [ c o s ( m − n ) t + c o s ( m + n ) t ] cosmtcosnt=\frac{1}{2}[cos(m-n)t+cos(m+n)t] cosmtcosnt=21[cos(mn)t+cos(m+n)t]

正弦级数和余弦级数

注意奇函数如果在零点有定义的话, f ( 0 ) = 0 f(0)=0 f(0)=0
f ( x ) = a 0 2 + ∑ n = 1 ∞ ( a n c o s n x + b n s i n n x ) f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} (a_{n}cosnx+b_{n}sinnx) f(x)=2a0+n=1(ancosnx+bnsinnx)
正弦级数表达式: f ( x ) = ∑ n = 1 ∞ b n s i n n x f(x)=\sum_{n=1}^{\infty}b_{n}sinnx f(x)=n=1bnsinnx
同样余弦级数: f ( x ) = a 0 2 + ∑ n = 0 ∞ a n c o s n x f(x)=\frac{a_{0}}{2}+\sum_{n=0}^{\infty}a_{n}cosnx f(x)=2a0+n=0ancosnx

Fourier级数习题:

1.1f(t)= A 2 ( s i n t + ∣ s i n t ∣ ) \frac{A}{2}(sint+|sint|) 2A(sint+sint)展开的Fourier级数
( ∫ − π π ∣ s i n t ∣ d t = 4 \int_{-\pi}^{\pi}|sint|dt=4 ππsintdt=4)
a 0 = 4 × A 2 a_{0}=4 \times \frac{A}{2} a0=4×2A
a n a_{n} an=
∫ − π π ∣ s i n t ∣ c o s n t d t \int_{-\pi}^{\pi}|sint|cosntdt ππsintcosntdt
这里我们操作一下: a n = ∫ 0 π s i n t c o s n t d t a_{n}=\int_{0}^{\pi}sintcosntdt an=0πsintcosntdt
学会利用三角变换:
s i n t c o s n t = 1 2 [ s i n ( t − n t ) + s i n ( t + n t ) ] sintcosnt=\frac{1}{2}[sin(t-nt)+sin(t+nt)] sintcosnt=21[sin(tnt)+sin(t+nt)]
也可以用分部积分法来计算
1 n sin ⁡ t sin ⁡ n t ∣ 0 π + 1 n ∫ 0 π cos ⁡ t sin ⁡ n t \frac{1}{n} \sin t \sin n t \bigg|_{0}^{\pi}+\frac{1}{n} \int_{0}^{\pi} \cos t \sin n t n1sintsinnt0π+n10πcostsinnt
n 2 − 1 n 2 ∫ 0 π sin ⁡ t cos ⁡ n t d t = 1 n sin ⁡ t sin ⁡ n t ∣ 0 π + 1 n cos ⁡ t cos ⁡ n t ∣ 0 π \frac{n^{2}-1}{n^{2}} \int_{0}^{\pi} \sin t \cos n t d t=\left.\frac{1}{n} \sin t \sin n t\right|_{0} ^{\pi}+\left.\frac{1}{n} \cos t \cos n t\right|_{0} ^{\pi} n2n210πsintcosntdt=n1sintsinnt0π+n1costcosnt0π
a n = ∫ 0 π s i n t c o s n t d t = − 2 ( c o s ( n π + 1 ) ) n 2 − 1 a_{n}=\int_{0}^{\pi}sintcosntdt=-\frac{2(cos(n\pi+1))}{n^2-1} an=0πsintcosntdt=n212(cos(nπ+1))}(详细写的话,分为奇数和偶数)
∫ 0 π s i n t c o s n t d t = − 2 ( c o s ( n π + 1 ) ) n 2 − 1 \int_{0}^{\pi}sintcosntdt=-\frac{2(cos(n\pi+1))}{n^2-1} 0πsintcosntdt=n212(cos(nπ+1))
b n b_{n} bn=
{ ∫ − π π s i n t s i n n t d t + ∣ s i n t ∣ s i n n t d t \int_{-\pi}^{\pi}sintsinntdt+|sint|sinntdt ππsintsinntdt+sintsinntdt}
注意 ∫ − π π ∣ s i n t ∣ s i n n t d t \int_{-\pi}^{\pi}|sint|sinntdt ππsintsinntdt=0(偶函数)
∫ − π π s i n t s i n n t d t = − 2 s i n ( π n ) n 2 − 1 \int_{-\pi}^{\pi}sintsinntdt=-\frac{2sin(\pi n)}{n^2 -1} ππsintsinntdt=n212sin(πn)(n分奇偶数来考虑)
f(t)= A ∣ s i n t ∣ A|sin t| Asint
与1的类似:注意 a n = 0 a_{n}=0 an=0
f ( x ) = { 1 x ∈ [ − π , 0 ) , 0 x ∈ [ 0 , π ) f(x)=\left\{ \begin{aligned} 1 \quad x\in[-\pi,0),\\ 0 \quad x\in[0,\pi) \end{aligned} \right. f(x)={1x[π,0),0x[0,π)的Fourier级数
f ( x ) = s g n ( x ) , x ∈ ( − π , π ) f(x)=sgn(x),x \in(-\pi,\pi) f(x)=sgn(x),x(π,π)展开成Fourier级数
sgn(x)为奇函数 a 0 = 0 , a n = 0 a_{0}=0,a_{n}=0 a0=0,an=0
利用正弦公式 b n = ∫ − π 0 − s i n ( n t ) d t = 1 − c o s ( π n ) n b_{n}=\int_{-\pi}^{0}-sin(nt)dt=\frac{1-cos(\pi n)}{n} bn=π0sin(nt)dt=n1cos(πn)
f ( x ) = x 2 2 − π 2 f(x)=\frac{x^{2}}{2}-\pi^{2} f(x)=2x2π2
f ( x ) f(x) f(x)为偶函数,考虑 a n = 1 π ∫ − π π f ( x ) c o s n x d x a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi}f(x)cosnxdx an=π1ππf(x)cosnxdx\
1 π ∫ − π π ( x 2 2 − π 2 ) c o s n x d x \frac{1}{\pi} \int_{-\pi}^{\pi}(\frac{x^{2}}{2}-\pi^{2})cosnxdx π1ππ(2x2π2)cosnxdx
先考虑 ∫ − π π π 2 c o s n x d x \int_{-\pi}^{\pi} \pi^{2}cosnxdx πππ2cosnxdx,由于对应的原函数sinnx里面 s i n n π = 0 sin n\pi =0 sinnπ=0\
接下来我们考虑 ∫ − π π x 2 2 c o s n x d x \int_{-\pi}^{\pi} \frac{x^{2}}{2}cosnxdx ππ2x2cosnxdx
我们利用分部积分: s i n n x x 2 2 ∣ − π π − 1 n 1 π ∫ − π π x s i n n x d x sinnx \frac{x^2}{2} \bigg|_{-\pi}^{\pi}-\frac{1}{n}\frac{1}{\pi}\int_{-\pi}^{\pi}xsinnxdx sinnx2x2ππn1π1ππxsinnxdx
∫ − π π x s i n n x d x \int_{-\pi}^{\pi}xsinnxdx ππxsinnxdx我们采用分部积分 − 1 n x c o s n x ∣ π π = 2 c o s n x n 2 -\frac{1}{n}xcosnx \bigg|_{\pi}^{\pi}=\frac{2cosnx}{n^{2}} n1xcosnxππ=n22cosnx
f ( x ) = { a x x ∈ [ − π , 0 ) , b x x ∈ [ 0 , π ) f(x)=\left\{ \begin{aligned} ax \quad x\in[-\pi,0),\\ bx \quad x\in[0,\pi) \end{aligned} \right. f(x)={axx[π,0),bxx[0,π)
正弦级数与余弦级数的习题:
f ( x ) = x ( x ∈ [ 0 , π ] ) f(x)=x(x \in[0,\pi]) f(x)=x(x[0,π])分别展开成正弦级数和余弦级数
正弦级数:
f ( x ) = e − 2 x , x ∈ [ 0 , π ] f(x)=e^{-2x},x\in[0,\pi] f(x)=e2x,x[0,π]
b n = b_{n}= bn= { ∫ 0 π e − 2 x s i n n x d x \int_{0}^{\pi}e^{-2x}sinnx dx 0πe2xsinnxdx}
= n − e − 2 π n c o s ( π n ) n 2 + 4 \frac{n-e^{-2 \pi}ncos(\pi n)}{n^2+4} n2+4ne2πncos(πn)
f ( x ) = { c o s π x 2 x ∈ [ 0 , 1 ) , 0 x ∈ [ 1 , 2 ] f(x)=\left\{ \begin{aligned} cos\frac{\pi x}{2} \quad x\in[0,1),\\ 0 \quad x\in[1,2] \end{aligned} \right. f(x)=cos2πxx[0,1),0x[1,2]
余弦级数:
f ( x ) = e x , x ∈ [ 0 , π ] f(x)=e^{x},x \in [0,\pi] f(x)=ex,x[0,π]
f ( x ) = x − π 2 + ∣ x − π 2 ∣ , x ∈ [ 0 , π ] f(x)=x-\frac{\pi}{2}+|x-\frac{\pi}{2}|,x \in [0,\pi] f(x)=x2π+x2π,x[0,π]
####Fourier级数的收敛判别法

Fourier级数的性质
  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值