U-Net论文

摘要:
U-net是基于全卷积网络拓展和修改而来,网络由两部分组成:一个收缩路径(contracting path)来获取上下文信息以及一个对称的扩张路径(expanding path)用以精确定位。
这种网络可以从很少的图像中进行端到端的训练。这个网络非常的快。
介绍:
与FCN不同的是:
1.我们的网络在上采样部分依然有大量的特征通道,这使得网络可以将空间上下文信息向更高的分辨率层传播。结果是,上采样路径基本对称于下采样路径,并呈现出一个U型。
2.网络不存在任何全连接层,并且,只使用每个卷积的valid部分(有效),例如,分割图只包含这样一些像素点,这些像素点的完整上下文都出现在输入图像中。这种策略允许使用Overlap-tile策略无缝地分割任意大小的图像。
3.为了预测图像边界区域的像素点,我们采用镜像图像的方式补全缺失的环境像素。这个tiling方法在使用网络分割大图像时是非常有用的,因为如果不这么做,GPU显存会限制图像分辨率。
总结一下:
Overlap-tile策略思想是:
对图像的某一块像素点(黄框内部分)进行预测时,需要该图像块周围的像素点(蓝色框内)提供上下文信息(context),以获得更准确的预测。这样的策略会带来一个问题,图像边界的图像块没有周围像素,因此作者对周围像素采用了镜像扩充。其周围扩充的像素点均由原图沿白线对称得到。这样,边界图像块也能得到准确的预测。另一个问题是,这样的操作会带来图像重叠问题,即第一块图像周围的部分会和第二块图像重叠。因此作者在卷积时只使用有效部分(valid part of each convolution)。这一块可以这样解说虽然卷积的时候会用到周围的像素点(蓝色框内),但最终传到下一层的只有中间原先图像块(黄色框内)的部分。经过不带padding的卷积操作后,最后的输出已经是(388,388)了,channel=2,两个channel分别为foreground和background的mask,及白色的细胞区域和黑色的背景区域,也就是完成了segmentation。
结论
本文提出的数据增强策略和U-Net网络结构确实能够使用非常少的训练样本而得到一个很好的医学上的分割效果,U-Net结构在医学图像分割领域有着重要的地位。
优势
① 本文使用到数据增强技术能够以少量的数据有较高的准确率,提高整体的鲁棒性。
② 收缩路径具备捕捉上下文的信息,能够补全输入图像的上下信息。
不足
① U-Net每次需要收缩路径的图像需要用于与后面的图像进行融合,所以每次池化产生的图像都需要存到内存中等待进行扩张路径的拼接,占用临时的内存较大。
补充说明:
使用训练所得模型对样本进行推理的过程,可以当做是一种广义上的测量行为。因此,在有监督学习中,ground truth (真实信息)通常指代样本集中的标签。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值