VoxelMorph [vksmɔːf] : A Learning Framework for Deformable Medical Image Registration
一个可变形的医学图像配准的学习框架–深度学习配准的经典方法
Abstract
亮点:我们通过卷积神经网络(CNN)对函数进行参数化,并在一组图像上优化神经网络的参数。
训练策略(损失函数):在第一种(无监督)设置中,我们训练模型以最大化基于图像强度的标准图像匹配目标函数。在第二个(有监督)设置中,我们利用训练数据中可用的辅助分割。
一、Introduction
传统的方法:传统的配准方法通过对齐外观相似的体素,同时对配准映射施加约束,来解决每个卷对的优化问题。不幸的是,解决成对优化可能需要大量的计算,因此在实践中很慢。
有监督的神经网络训练的方式虽然提升了速度,但需要大量的标注信息。无监督的神经网络训练具有速度快、不需要标注信息的特点。
我们的方法: 从卷集合中学习参数化配准函数。我们实现这个函数使用的是CNN,它接受两个n-D输入卷,并输出一个卷的所有体素到另一个卷的映射。
本质上:我们在训练阶段用一个全局函数优化替换了为每个测试图像对求解的代价高昂的优化。
文章整体架构:第2节介绍医学图像配准,第3节介绍相关工作。第4节介绍了我们的方法。第5节给出了MRI数据的实验结果。第6节讨论结果的见解和结论。
二、Background
现有的大多数变形配准算法都是基于能量函数迭代优化变换。
变形配准策略:用于全局对齐的初始仿射转换(刚性变换),然后是具
VoxelMorph: A Learning Framework for Deformable Medical Image Registration论文阅读(图像配准的)
最新推荐文章于 2024-03-24 09:32:08 发布