Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

CycleGAN是2017年ICCV会议上提出的一种无需成对样本的图像到图像转换方法。它利用循环一致性的概念,通过两个相互逆的转换器G和F实现X到Y和Y到X的转换,同时通过循环稳定损失函数确保转换后的图像在经过反向转换后尽可能接近原始图像。这种方法扩大了GAN在图像转换应用的范围,如风格迁移,且对后续研究产生了深远影响。
摘要由CSDN通过智能技术生成

Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

Cycle GAN是GAN系列文章必读的论文之一,Cycle GAN很好的起到了承上启下的作用,对于后续属实是影响深远,意义重大。



前言

Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks源自于2017年的ICCV,提出了unpaired image to image translation,使得image to image translation的训练不仅仅局限于成对,论文中亦有许多的创新点值得我们去研究学习。
论文地址:https://arxiv.org/pdf/1703.10593.pdf


一、总述

图像到图像的翻译(Image-to-Image Translation):从给定的场景X完成一张图像到另一个场景Y的转换。

图像到图像的翻译是计算机视觉中非常有意思的问题,并且应用的范围非常的广泛,采用成对的图像进行训练,目标就是学习从输入图像到目标图像的映射。

然而,在很多任务中成对的数据集是没有办法得到的。Cycle GAN的亮点就在于无需使用成对的样本来进行训练模型的新思路,像pix2pix这类的方法则需要成对的数据来进行训练。

二、Cycle GAN理论基础

1. 循环一致性

我们将一个句子从中文翻译到英文,然后再将其翻译回中文,我们应该得到与原始的中文相同的句子,这就是循环一致性。

基于这个逻辑,假设我们有两个转换器:G:X→Y;F:Y→X。这两个转换器G和F是互逆的,两者为双向映射。

在这里插入图片描述
以下的四个逻辑要梳理清楚:
G(X) = Y
F(Y) = X
F(G(X)) = X
G(F(Y)) = Y

2. 循环稳定损失

在我们现实的训练中、实践中总会发现循环一致性原理总会或多或少的存在误差。

在这里插入图片描述

在这里插入图片描述
这个地方就是存在一定的误差量,那么我们能做的就是使得F(G(X)) ≈ X,G(F(Y)) ≈ Y。

在这里插入图片描述

在这里插入图片描述

论文中的做法就是添加一个循环一致性损失函数,从而使得F(G(X)) ≈ X,G(F(Y)) ≈ Y。

三、训练过程

首先,梳理一下Cycle GAN的判别器和生成器的数量。很显然,判别器两个,生成器同样也是两个,这是和我们传统意义上的GAN的结构不太一样的,但是他的训练过程确实大同小异的。

一方面训练判别器Dx和Dy,使得判别器对映射图像和真实图像的判别能力不断增强,也就是max Dx,Dy ;

另一方面是训练生成器F,G,使得其对X→Y的图像变换和Y→X的图像变换越来越成熟,变换图像和目标图像也越来越像,同时使得X→Y→X,Y→X→Y的过程loss也越来越小,也就是min F G。

四、损失函数

算法的整体损失函数Loss包含三部分:X→Y的生成对抗损失,Y→X的生成对抗损失以及论文中提出的循环一致性损失。
(1)生成对抗损失

在这里插入图片描述

(2)循环一致性损失

在这里插入图片描述

(3)总损失函数

在这里插入图片描述
其中,这里的λ是控制两个对象的相对重要性。

对抗损失(adversarial loss):促使生成图像分布与目标图像分布向接近
循环一致性损失(cycle consistency loss): 使得F(G(X)) ≈ X,G(F(Y)) ≈ Y

五、结果展示

风格转换:
在这里插入图片描述

在这里插入图片描述

总结

Cycle GAN解决了image-to-image的训练数据不用是成对存在,使得GAN的应用范围更加广泛。

这其中不乏有许多的创新点:
(1)将成对的数据集转换成为成对的转换关系(突破数据集的限制)
(2)提出了循环一致性损失函数(新颖的损失函数)

总之,论文出自于2017年,对于后续的系列GAN的应用有很大的帮助,包括实现超分辨率、实现风格转换等都是有着重要的参考价值。

每一次写一篇都是为了让自己有更深的思考,当然也希望你们能读懂。加油,兄弟们!

参考文献

[1]https://zhuanlan.zhihu.com/p/45394148
[2]https://blog.csdn.net/luojun2007/article/details/81157378
[3]https://www.cnblogs.com/recoverableTi/p/13452479.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值