YOLO系列之训练环境(GPU)搭建篇

本文详细介绍了在Windows环境下使用Anaconda搭建YOLO系列模型训练所需的Pytorch、CUDA和cuDNN环境。首先讲解Anaconda的安装,强调安装路径避免中文和C盘。接着,阐述CUDA的安装步骤,包括版本兼容性,并提供下载与安装指南。同时,介绍了cuDNN的下载与放置路径。最后,提到了YOLOv5/v7/v8的环境安装流程。

在这里插入图片描述


在这里插入图片描述
YOLOv8专栏导航点击此处跳转


🚀Pytorch环境配置(Windows)

🔨 Anaconda安装

  • 此处下载安装即可

    ⭐温馨提示:安装路径不能含有中文,建议不要安在c盘(很占内存)

### YOLOv8训练环境搭建指南 YOLOv8 是一种先进的目标检测框架,其安装和配置过程相对简单。以下是有关如何搭建 YOLOv8 训练环境的详细说明: #### 1. Python 文件运行环境 所有涉及 YOLOv8 的 Python 脚本都需要在一个特定的工作目录下执行,通常命名为 `yv8` 或类似的名称。为了验证 PyTorch 是否正常工作以及检查当前环境是否满足需求,可以使用脚本 `checkEnv.py` 进行测试[^1]。 #### 2. 数据集准备 在正式开始训练之前,需要准备好用于训练的数据集并将其结构化存储到指定文件夹中。通过运行 `createDatasets.py` 可以完成这一操作,该脚本会帮助创建必要的数据集文件夹结构[^1]。 #### 3. 使用预训练权重进行推理 如果希望先了解模型性能再进入实际训练阶段,则可以通过加载官方提供的预训练权重来进行快速推理演示。例如,下面这条命令展示了如何利用默认的小型网络架构 (`yolov8n`) 对一张图片执行对象检测任务: ```bash yolo task=detect mode=predict model=yolov8n.pt conf=0.25 source='ultralytics/assets/bus.jpg' ``` 这里设置了置信度阈值为 0.25,并指定了输入图像的位置[^2]。 #### 4. 自定义训练参数设定 当一切准备工作就绪之后,在启动自定义数据集上的训练前还需要明确几个重要选项: - **Data Configuration**: 设置指向本地 YAML 格式的标注信息路径;比如苹果分类项目中的例子就是 `"datasets/Apple/apple.yaml"`。 - **Model Selection & Pretraining Weights Loading**: 明确指出要采用哪种规模的基础模型及其对应的预训练状态;如选用轻量级版本可写成 `'yolov8n.yaml'`, 并关联至远程地址下载初始权值 `'ultralytics/yolov8n.pt'`. - **Epoch Count Definition**: 设定整个学习周期长度以便控制迭代次数达到预期效果; 假设我们计划让算法经历一百轮优化循环则应记录如下字段:`epochs=100`. 最终完整的训练指令可能看起来像这样: ```yaml data = datasets/Apple/apple.yaml model = yolov8n.yaml weights = ultralytics/yolov8n.pt epochs = 100 ``` 以上步骤涵盖了从基础依赖项确认直到高级功能定制在内的全方位指导方案[^3]. ```python import torch print(torch.__version__) if not torch.cuda.is_available(): raise SystemExit('CUDA unavailable! Please ensure GPU drivers are correctly installed.') else: print(f'CUDA detected with {torch.cuda.device_count()} device(s).') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

w94ghz

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值