b站唐老师人工智能基础知识笔记

0.机器学习(常用科学计算库的使用)基础定位、目标定位

定位
作为人工智能领域(数据挖掘/机器学习方向)的基础课程,为长期从事人工智能方向打下坚实的基础。

目标
●了解机器学习定义以及应用场景
●掌握机器学习基础环境的安装和使用
●掌握利用常用的科学计算库对数据进行分析

1.机器学习概述

学习目标

  • 了解人工智能发展历程
  • 了解机器学习定义以及应用场景
  • 说明机器学习算法监督学习与无监督学习的区别
  • 说明监督学习总分的分类、递归特点
  • 说明机器学习的发展流程

1.1.人工智能概述

  • 目标

  • 了解人工智能再现实生活中的应用

  • 了解人工智能阶段授课内容

  • 应用


1.人工智能应用场景

在这里插入图片描述

2.人工智能小案例
案例一:

在这里插入图片描述
案例二:
在这里插入图片描述

案例三:
在这里插入图片描述

3.人工智能阶段课程安排
4.小结

  • 人工智能应用场景【了解】

  • 网络安全,电子商务,计算模拟,社交网络。。。。。

1.2.人工智能发展历程

学习目标

  • 目标
  • 了解图灵测试
  • 了解人工智能发展历程
  • 应用

1图灵测试

测试者与被测试者(一个人和一台机器)隔开的情况下,通过一些装置(如键盘向被测试者随意提问。多次测试(一般为5min之内),如果有超过30%的测试者能确定被测试者是人还是机器,那么这台机器就通过了测试,并被认为具有人类智能。

在这里插入图片描述
●达特茅斯会议-人工智能的起点
1956年8月,在美国汉诺斯小镇宁静的达特茅斯学院中,
约翰麦卡锡(John McCarthy)
马文.闵斯基(Marvin Minsky,人工智能与认知学专家)
克劳德香农(Claude Shannon,信息论的创始人)
艾伦.纽厄尔(Allen Newell,计算机科学家)
赫伯特西蒙(Herbert Simon,诺贝尔经济学奖得主)等科学家正聚在一起, 讨论着一个完全不食人间烟火的主题:用机器来模仿人类学习以及其他方面的智能。
会议足足开了两个月的时间,虽然大家没有达成普遍的共识,但是却为会议讨论的内容起了一个名字:
人工智能
因此,1956年也就成为了人工智能元年。

2发展历程
●第一个黄金时期(1956- 20世纪70年代)
美国国防部赞助MIT222万美金,之后每年300万美金;
1963年斯坦福第一个AI实验室成立
●第二个黄金时期(1956-20世纪70年代)
日本的第五代计算机项目拔款8.5亿美金;
1986,误差反向传播(BP)算法诞生;
●第一个低谷时期(20世纪70年代至80年代初)
James Lighthll:《Artificial Itelligence: A general survey》
专家系统:“知识期”
●第二个低谷时期(20世纪80年代至90年代初)
IBM与Apple普通台式机性能超越“智能计算机"
1991,日本的第五代计算机宣告失败

在这里插入图片描述

3小结
●人工智能的起源[了解]
。图灵测试
。达特茅斯会议
●人工智能的发展经历了3个阶段[了解]
。1980年代是正式成形期,尚不具备影响力。
。1990-2010年代是蓬勃发展期,诞生了众多的理论和算法,真正走向了实用。
。2012年之后是深度学习期,深度学习技术诞生并急速发展,较好的解决了现阶段AI的一些重点问
题,并带来了产业界的快速发展。

1.3.人工智能主要分支

学习目标

  • 目标
  • 了解人工智能、机器学习和深度学习的区别
  • 了解人工智能主要分支
  • 应用

1.人工智能、机器学习和深度学习

在这里插入图片描述
●人工智能和机器学习,深度学习的关系
。机器学习是人工智能的-一个实现途径
。深度学习是机器学习的一个方法发展而来

2.主要分支介绍

通讯、感知与行动是现代人工智能的三个关键能力,在这里我们将根据这些能力/应用对这三个技术领域进行介绍:计算机视觉(CV)、自然语言处理(NLP)和机器人。在NLP领域中,将覆盖文本挖掘/分类、机器翻译和语音识别。
●分支一:计算机视觉
计算机视觉(CV)是指机器感知环境的能力。这一技术类别中的经典任务有图像形成、图像处理、图像提取和图像的三维推理。物体检测和人脸识别是其比较成功的研究领域。

当前阶段:
计算机视觉现已有很多应用,这表明了这类技术的成就,也让我们将其归入到应用阶段。随着深度学习的发展,机器甚至能在特定的案例中实现超越人类的表现。但是,这项技术离社会影响阶段还有一定距离,那要等到机器能在所有场景中都达到人类的同等水平才行(感知其环境的所有相关方面。

发展历史:
在这里插入图片描述

在这里插入图片描述
●分支二:
语音识别是指识别语音(说出的语言)并将其转换成对应文本的技术。相反的任务(文本转语音/TTS)也是这一领域内一个类似的研究主题。

当前阶段:
语音识别已经处于应用阶段很长时间了。最近几年,随着大数据和深度学习技术的发展,语音识别进展颇丰,现在已经非常接近社会影响阶段了。
语音识别领域仍然面临着声纹识别和「鸡尾酒会效应」等一些特殊情况的难题。
现代语音识别系统严重依赖于云,在离线时可能就无法取得理想的工作效果。
发展历史:
在这里插入图片描述
●百度语音识别:

  • 距离小于1米,中文字准率97%
  • 支持耳语、长语音、中英文混合以及方言
    在这里插入图片描述

分支三:文本挖掘/分类
这里的文本挖掘主要是指文本分类,该技术可用于理解、组织和分类结构化或非结构化文本文档。其涵盖的主要任务有句法分析、情绪分析和垃圾信息检测。

当前阶段:
我们将这项技术归类到应用阶段,因为现在有很多应用都已经集成了基于文本挖掘的情绪分析或垃圾信息检测技术。文本挖掘技术也在智能投顾的开发中有所应用,并且提升了用户体验。

文本挖掘和分类领域的一个瓶颈出现在歧义和有偏差的数据上。

发展历史:
在这里插入图片描述

●分支四:机器翻译
机器翻译(MT)是利用机器的力量自动将一种自然语言(源语言)的文本翻译成另一种语言(目标语言)。机器翻译方法通常可分成三大类:基于规则的机器翻译(RBMT)、统计机器翻译(SMT)和神经机器翻译(NMT)。

当前阶段:
机器翻译是一个见证了大量发展历程的应用领域。该领域最近由于神经机器翻译而取得了非常显著的进展,但仍然没有全面达到专业译者的水平;但是,我们相信在大数据、云计算和深度学习技术的帮助下,机器翻译很快就将进入社会影响阶段。

在某些情况下,俚语和行话等内容的翻译会比较困难(受限词表问题)。

专业领域的机器翻译(此如医疗领域)表现通常不好。

发展历史:
在这里插入图片描述

●分支五:机器人
机器人学(Robotics)研究的是机器人的设计、制造、运作和应用,以及控制它们的计算机系统、传感反馈和信息处理。

机器人可以分成两大类:固定机器人和移动机器人。固定机器人通常被用于工业生产(此如用于装配线)。常见的移动机器人应用有货运机器人、空中机器人和自动载具。机器人需要不同部件和系统的协作才能实现最优的作业。其中在硬件上包含传感器、反应器和控制器;另外还有能够实现感知能力的软件,比如定位、地图测绘和目标识别。

当前阶段:

自上世纪「Robot」一词诞生以来,人们已经为工业制造业设计了很多机器人。工业机器人是增长最快的应用领域,它们在20世纪80年代将这一领域带入了应用阶段。在安川电机、Fanuc、 ABB、库卡等公司的努力下,我们认为进入21世纪之后,机器人领域就已经进入了社会影响阶段,此时各种工业机器人已经主宰了装配生产线。此外,软体机器人在很多领域也有广泛的应用,比如在医疗行业协助手术或在金融行业自动执行承销过程。
但是,法律法规和「机器人威胁论」可能会妨碍机器人领域的发展。还有设计和制造机器人需要相对较高的投资。

发展历史:

在这里插入图片描述

总的来说,人工智能领域的研究前沿正逐渐从搜索、知识和推理领域转向机器学习、深度学习、计算机视觉和机器人领域。大多数早期技术至少已经处于应用阶段了,而且其中-些已经显现出了社会影响力。一些新开发的技术可能仍处于工程甚至研究阶段,但是我们可以看到不同阶段之间转移的速度变得越来越快。

3.人工智能发展必备三要素
●数据
●算法
●计算力

	逐层、分布、并行算法能力提升
	GPU、FPGA、TPU能力答复提升	

4.拓展:GPU和CPU对比
在这里插入图片描述
Cache, local memory: CPU> GPU
Threads(线程数): GPU> CPU
SIMD Unit(单指令多数据流,以同步方式,在同一时间内执行同一条指令): GPU> CPU
●1.GPU 加速计算可以将应用程序计算密集部分的工作负载转移到GPU,同时仍由CPU运行其余程序代码。从用户的角度来看,应用程序的运行速度明显加快.
●2,CPU由专为顺序串行处理而优化的几个核心组成,而GPU则拥有-个由数以千计的更小。更高效的核心(专为同时处理多重任务而设计)组成的大规模并行计算架构.

在这里插入图片描述
●3,CPU需要很强的通用性来处理各种不同的数据类型,同时又要逻辑判断又会引入大量的分支跳转和中断的处理。这些都使得CPU的内部结构异常复杂。而GPU面对的则是类型高度统一的、 相互无依赖的大规模数据和不需要被打断的纯净的计算环境。GPU采用了数量众多的计算单元和超长的流水线,但只有非常简单的控制逻辑并省去了Cache.而CPU不仅被Cache占据了大量空间,而且还有复杂的控制逻辑和诸多优化电路,相比之下计算能力只是CPU很小的一部分.
在这里插入图片描述
●提问:什么类型的程序适合在GPU上运行?
(1)计算密集型的程序。所谓计算密集型(Compute-intensive)的程序,就是其大部分运行时间花在了寄存器运算上,寄存器的速度和处理器的速度相当,从寄存器读写数据几乎没有延时。可以做一下对比, 读内存的延迟大概是几百个时钟周期;读硬盘的速度就不说了,即便是SSD,也实在是太慢了。

(2)易于并行的程序。GPU其实是一种SIMD(Single Instruction Multiple Data)架构,他有成百上千个核,每一个核在同一时间最好能做同样的事情。

Google cloud链接(拓展) :
https://cloud.google. com/tpu/?hl=zh-cn

AI芯片发展史链接(拓展) :
https://buzzorange. com/techorange/2017/09/27/what-intel-google-nvidia-microsoft-do-for-ai-chips/

4小结
●人工智能和机器学习,深度学习的关系[知道]
。机器学习是人工智能的一个实现途径
。深度学习是机器学习的一个方法发展而来
●人工智能主要分支[了解]
。计算机视觉
。语音识别
。文本挖掘/分类
。机器翻译
。机器人

1.4.机器学习工作流程

学习目标

  • 目标
  • 了解机器学习的定义
  • 了解机器学习的工作流程
  • 应用

1.什么是机器学习
机器学习是从数据中自动分析获得模型,并利用模型对未知数据进行预测.
在这里插入图片描述
2.机器学习工作流程
在这里插入图片描述
在这里插入图片描述

●机器学习工作流程总结
。1.获取数据
。2.数据基本处理
。3.特征工程
。4.机器学习(模型训练)
。5.模型评估

2.1获得到的数据集介绍

在这里插入图片描述
在这里插入图片描述
●数据简介
在数据集中一般:
。一行数据我们称为一个样本
。一列数据我们成为一个特征
。有些数据有目标值(标签值),有些数据没有目标值(如上表中,电影类型就是这个数据集的目标值)

●数据类型构成:
。数据类型一:特征值+目标值(目标值是连续的或离散的)
。数据类型二:只有特征值,没有目标值

●数据分割:
。机器学习一般的数据集会划分为两个部分:
■训练数据:用于训练,构建模型
■测试数据:在模型检验时使用,用于评估模型是否有效
。划分比例:
■训练集: 70% 80% 75%
■测试集: 30% 20% 25%

2.2数据基本处理
即对数据进行缺失值、取出异常值等处理

2.3特征工程
2.3.1什么是特征工程
特征工程是使用专业背景知识和技巧处理数据,使得特征能在机器学习算法上发挥更好的作用的过程。
●意义:会直接影响机器学习的效果

特征工程就是让我们的数据转换成机器更容易识别的数据。		
2.3.2为什么需要特征工程(Feature Engineering)
	机器学习领域的大神Andrew Ng(吴恩达)老师说“Coming up with features is difiult, time-consuming, requires expert knowledge. "Applied machine learning" is basically feature engineering.”

注:业界广泛流传:数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。
···
这句话的意思就是让模型训练的效果更好一些。
···
2.3.3特征工程包含内容
●特征提取
●特征预处理
●特征降维

2.3.3.1特征提取
特征提取: 将任意数据(如文本或 图像)转换为可用于机器学习的数字特征

在这里插入图片描述
2.3.3.2特征预处理
特征预处理: 通过一些转换函数将特征数据转换成更加适合算法模型的特征数据过程。(目的:把数值映射到一定的范围之内)
在这里插入图片描述
2.3.3.3特征降维
特征降维:指再某些限定条件下, 降低随机变量(特征)个数, 得到一组“不相关”主变量的过程。
在这里插入图片描述
2.4机器学习
选择合适的算法对模型进行训练(具体内容见1.5)

2.5模型评估
对训练好的模型进行评估(具体内容见1.6)

3 完整机器学习项目的流程(拓展阅读)
(1) 抽象成数学问题
明确问题是进行机器学习的第-步。 机器学习的训练过程通常都是一件非常耗时的事情,胡乱尝试时间成本是非常高的。

这里的抽象成数学问题,指的明确我们可以获得什么样的数据,抽象出的问题,是一个分类还是回归或者是聚类的问题。

(2)获取数据
数据决定了机器学习结果的上限,而算法只是尽可能逼近这个上限。

数据要有代表性,否则必然会过拟合。

而且对于分类问题,数据偏斜不能过于严重,不同类别的数据数量不要有数量级的差距。

而且还要对数据的量级有一一个评估,多少个样本,多少个特征,可以估算出其对内存的消耗程度,判断训练过程中内存是否能够放得下。如果放不下就得考虑改进算法或者使用一些降维的技巧了。 如果数据量实在太大,那就要考虑分布式了。

(3)特征预处理与特征选择
良好的数据要能够提取出良好的特征才能真正发挥作用。

特征预处理、数据清洗是很关键的步骤,往往能够使得算法的效果和性能得到显著提高。归一化、离散化、因子化、缺失值处理、去除共线性等,数据挖掘过程中很多时间就花在它们上面。这些工作简单可复制,收益稳定可预期,是机器学习的基础必备步骤。

筛选出显著特征、摒弃非显著特征,需要机器学习工程师反复理解业务。这对很多结果有决定性的影响。特征选择好了,非常简单的算法也能得出良好、稳定的结果。这需要运用特征有效性分析的相关技术,如相关系数、卡方检验、平均互信息、条件熵、后验概率、逻辑回归权重等方法。

(4)训练模型与调优
直到这一步才用到我们上面说的算法进行训练。现在很多算法都能够封装成黑盒供人使用。但是真正考验水平的是调整这些算法的(超)参数,使得结果变得更加优良。这需要我们对算法的原理有深入的理解。理解越深入,就越能发现问题的症结,提出良好的调优方案。

(5)模型诊断
如何确定模型调优的方向与思路呢?这就需要对模型进行诊断的技术。

过拟合、欠拟合判断是模型诊断中至关重要的一步。常见的方法如交叉验证,绘制学习曲线等,过拟合的基本调优思路是增加数据量,降低模型复杂度。欠拟合的基本调优思路是提高特征数量和质量,增加模型复杂度。.

误差分析也是机器学习至关重要的步骤。通过观察误差样本全面分析产生误差的原因:是参数的问题还是算法选择的问题,是特征的问题还是数据本身的问题…

诊断后的模型需要进行调优,调优后的新模型需要重新进行诊断。这是-一个反复迭代不断逼近的过程,需要不断地尝试,进而达到最优状态。

(6)模型融合
一般来说,模型融合后都能使得效果有一定提升。而且效果很好。

工程上,主要提升算法准确度的方法是分别在模型的前端(特征清洗和预处理,不同的采样模式)与后端(模型融合)上下功夫。因为他们比较标准可复制,效果比较稳定。而直接调参的工作不会很多,毕竟大量数据训练起来太慢了,而且效果难以保证。

(7)上线运行
这一部分内容主要跟工程实现的相关性比较大。工程上是结果导向,模型在线上运行的效果直接决定模型的成败。不单纯包括其准确程度、误差等情况,还包括其运行的速度(时间复杂度)、资源消耗程度(空间复杂度)、稳定性是否可接受。

这些工作流程主要是工程实践上总结出的一些经验。并不是每个项目都包含完整的-个流程。这里的部分只是一个指导性的说明,只有大家自己多实践,多积累项目经验,才会有自己更深刻的认识。

1.5.机器学习算法分类

学习目标

  • 目标

  • 了解机器学习常用算法的分类

  • 应用


根据数据集组成不同,可以把机器学习算法分为:
●监督学习

●无监督学习

●半监督学习

●强化学习


1 监督学习
●定义:

  • 输入数据是由输入特征值和目标值所组成。
    ■函数的输出可以是一个连续的值(称为回归),
    ■或是输出是有限个离散值(称作分类)。

1.1回归问题
例如:预测房价,根据样本集拟合出一条连续曲线。

在这里插入图片描述

1.2分类问题

例如:根据肿瘤特征判断良性还是恶性,得到的是结果是“良性”或者“恶性”,是离散的。
在这里插入图片描述

2无监督学习

●定义:输入数据是由输入特征值组成。

输入数据没有被标记,也没有确定的结果。样本数据类别未知,需要根据样本间的相似性对样本集进
行分类(聚类,clustering) 试图使类内差距最小化,类间差距最大化。
举例:
在这里插入图片描述

  • 有监督,无监督算法对比
    在这里插入图片描述
    3半监督学习

半监督学习:即训练集同时包含有标记样本数据和未标记样本数据。

举例:
●监督学习训练方式:
在这里插入图片描述

  • 半监督训练方式
    在这里插入图片描述

4强化学习
强化学习:实质是,make decisions问题,即自动进行决策,并且可以做连续决策。

举例:
小孩想要走路,但在这之前,他需要先站起来,站起来之后还要保持平衡,接下来还要先迈出一条腿,是左腿还是右腿,迈出一步后还要迈出下一-步。

小孩就是agent,他试图通过采取行动(即行走)来操纵环境(行走的表面),并且从一个状态转变到另
一个状态(即他走的每一步),当他完成任务的子任务(即走了几步)时,孩子得到奖励(给巧克力
吃),并且当他不能走路时,就不会给巧克力。

主要包含四个元素: agent, 环境状态,行动,奖励;
在这里插入图片描述

强化学习的目标就是获得最多的累计奖励。

监督学习和强化学习的对比:

在这里插入图片描述

在这里插入图片描述

拓展阅读: Alphago进化史漫画告诉你Zero为什么这么牛http://sports. sina.com.cn/chess/weiqi/2017-10-
21/doc-ifymyyxw4023875.shtml

5机器学习算法分类
●监督学习(supervised lerning) (预测)

  • 定义:输入数据是由输入特征值和目标值所组成。函数的输出可以是一个连续的值(称为回归),或是输出是有限个离散值(称作分类)。

  • In: 有标签,Out:有反馈
    目的:预测结果
    案例:猫狗分类,房价预测

  • 分类 k-近邻算法、贝叶斯分类、决策树与随机森林、逻辑回归、神经网络

  • 回归 线性回归、岭回归
    ●无监督学习(unsupervised learning)

  • 定义:门输入数据是由输入特征值所组成。

  • In:无标签,Out:无反馈
    目的:发现潜在结构
    案例:“物以类聚,人以群分”

  • 聚类k-means , 降维
    ●半监督学习

  • 已知:训练样本Data和待分类的类别
    未知:训练样本有无标签均可
    应用(案例) :训练数据量过多时,监督学习效果不能满足需求.因此用来增强效果。

●强化学习

  • In: 决策流程及激励系统,Out: 一系列行动
    目的:长期利益最大化,回报函数(只会提示你是否在朝着目标方向前进的延迟反映)
    案例:学下棋
    算法:马尔科夫决策,动态规划

6小结
●监督学习 - - - 有特征值,有目标值[重点]

  • 回归问题 - - - 目标值是连续
  • 分类问题 - - - 目标值是离散的
    ●无监督学习 - - - 有特征值,无目标值
    ●半监督学习 - - - 有特征
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值