并发编程(第六章 共享模型之无锁)

9 篇文章 0 订阅

本章内容

  • CAS与volatile
  • 原子整数
  • 原子引用
  • 原子累加器
  • Unsafe

一、问题提出

有如下需求,保证accout.withdraw取款方法的线程安全

interface Account {
    // 获取余额
    Integer getBalance();

    // 取款
    void withdraw(Integer amount);

    /**
     * 方法内会启动 1000 个线程,每个线程做 -10 元 的操作
     * 如果初始余额为 10000 那么正确的结果应当是 0
     */
    static void demo(Account account) {
        List<Thread> ts = new ArrayList<>();
        for (int i = 0; i < 1000; i++) {
            ts.add(new Thread(() -> {
                account.withdraw(10);
            }));
        }
        long start = System.nanoTime();
        ts.forEach(Thread::start);
        ts.forEach(t -> {
            try {
                t.join();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        });
        long end = System.nanoTime();
        System.out.println(account.getBalance()
                + " cost: " + (end-start)/1000_000 + " ms");
    }
}

原有实现并不是线程安全的

class AccountUnsafe implements Account { 
	private Integer balance;
	
	public AccountUnsafe(Integer balance) { 
		this.balance = balance;
	}
	
	@Override
	public Integer getBalance() { 
		return balance;
	}
	
	@Override
	public void withdraw(Integer amount) { 
		balance -= amount;
	} 
}
 

执行测试代码

public static void main(String[] args) { 
	Account.demo(new AccountUnsafe(10000));
}

某次的执行结果:
在这里插入图片描述

1、为什么不安全

withdraw方法

public void withdraw(Integer amount) { 
	 balance -= amount;
}

对应的字节码:
在这里插入图片描述

多线程执行流程
在这里插入图片描述
在这里插入图片描述

  • 单核的指令交错
  • 多核的指令交错

2、解决思路 - 锁

首先想到的是给Account对象加锁

class AccountUnsafe implements Account {

    private Integer balance;

    public AccountUnsafe(Integer balance) {
        this.balance = balance;
    }

    @Override
    public Integer getBalance() {
        synchronized (this) {
            return this.balance;
        }
    }

    @Override
    public void withdraw(Integer amount) {
        synchronized (this) {
            this.balance -= amount;
        }
    }
}

结果为:
在这里插入图片描述

3、解决思路 - 无锁

class AccountSafe implements Account { 
	private AtomicInteger balance;
	public AccountSafe(Integer balance) { 
		this.balance = new AtomicInteger(balance);
	}
	
	@Override
	public Integer getBalance() { 
		return balance.get();
	}
	
	@Override
	public void withdraw(Integer amount) { 
		while (true) {
			int prev = balance.get();
			int next = prev - amount;
			if (balance.compareAndSet(prev, next)) {
				break; 
			}
		}
		// 可以简化为下面的方法
		// balance.addAndGet(-1 * amount);
	} 
}
  

执行测试代码:

public static void main(String[] args) { 
	Account.demo(new AccountSafe(10000));
}

某次执行的结果:
在这里插入图片描述

二、CAS 与 volatile

前面看到的AtomicInteger的解决方法,内部并没有用锁来保护共享变量的线程安全。那么它是如何实现的呢?

public void withdraw(Integer amount) { 
	while(true) {
		// 需要不断尝试,直到成功为止 
		while (true) {
			// 比如拿到了旧值 1000
			int prev = balance.get(); // 在这个基础上 1000-10 = 990 
			int next = prev - amount; 
			/*
			compareAndSet 正是做这个检查,在 set 前,先比较 prev 与当前值 - 不一致了,next 作废,返回 false 表示失败
			比如,别的线程已经做了减法,当前值已经被减成了 990
			那么本线程的这次 990 就作废了,进入 while 下次循环重试 - 一致,以 next 设置为新值,返回 true 表示成功
			*/
			if (balance.compareAndSet(prev, next)) { 
				break;
			} 
		}
	}
}
  

其中的关键是compareAndSet,它的简称就是CAS(也有Compare And Swap的说法),它必须是原子操作。

在这里插入图片描述

注意:
其实CAS的底层是lock cmpxchg指令(X86架构),在单核CPU和多核CPU下都能够保证【比较-交换】的原子性

1、慢动作分析

@Slf4j
public class SlowMotion {

	public static void main(String[] args) { 
		AtomicInteger balance = new AtomicInteger(10000); 
		int mainPrev = balance.get();
		log.debug("try get {}", mainPrev);
		
		new Thread(() -> { 
			sleep(1000);
			int prev = balance.get(); 
			balance.compareAndSet(prev, 9000); 
			log.debug(balance.toString());
		}, "t1").start();
		
		sleep(2000);
		log.debug("try set 8000...");
		boolean isSuccess = balance.compareAndSet(mainPrev, 8000); 
		log.debug("is success ? {}", isSuccess);
		if(!isSuccess){
			mainPrev = balance.get();
			log.debug("try set 8000...");
			isSuccess = balance.compareAndSet(mainPrev, 8000); 
			log.debug("is success ? {}", isSuccess);
		} 
	}
	
	private static void sleep(int millis) { 
		try {
			Thread.sleep(millis);
		} catch (InterruptedException e) {
			e.printStackTrace(); 
		}
	} 
}

输出结果
在这里插入图片描述

2、volatile

1、获取共享变量时,为了保证该变量的可见性,需要使用volatile修饰。
2、它可以用来修饰成员变量和静态成员变量,他可以避免线程从自己的工作缓存中查找变量的值,必须到主存中获取它的值,线程操作volatile变量都是直接操作主存。即一个线程对volatile变量的修改,对另一个线程可见。

  • 注意:
    volatile仅仅保证了共享变量的可见性,让其它线程能够看到最新值,但不能解决指令交错问题(不能保证原子性)

3、CAS必须借助volatile才能读取到共享变量的最新值来实现【比较并交换】的效果。

3、为什么无锁效率高

  • 无锁情况下,即使重试失败,线程始终在高速运行,没有停歇,而synchronized会让线程在没有获得锁的时候,发生上下文切换,进入阻塞。打个比喻;
  • 线程就好像高速跑道上的赛车,高速运行时,速度超快,一旦发生上下文切换,就好比赛车要减速、熄火,等被唤醒又得重新打火、启动、加速…恢复到高速运行,代价比较大;
  • 但无锁情况下,因为线程要保持运行,需要额外CPU的支持,CPU在这里就好比高速跑道,没有额外的跑道,线程想高速运行也无从谈起,虽然不会进入阻塞,但由于没有分到时间片,仍然会进入可运行状态,还是会导致上下文切换。

在这里插入图片描述

4、CAS的特点

结合CAS和volatile可以实现无锁并发,适用于线程数少、多核CPU的场景下。

  • CAS是基于乐观锁的思想:最乐观的估计,不怕别的线程来修改共享变量,就算改了也没关系,我吃亏点再重试呗;
  • synchronized是基于悲观锁的思想:最悲观的估计,得防着其它线程来修改共享变量,我上来锁你们都别想改,我改完了解开锁,你们才有机会;
  • CAS体现的是无锁并发、无阻塞并发,请仔细体会这两句话的意思:
    – 因为没有使用synchronized,所以线程不会陷入阻塞,这是效率提升的因素之一;
    – 但如果竞争激烈,可以想到重试必然频繁发生,反而效率会受影响。

三、原子整数

J.U.C 并发包提供了:

  • AtomicBoolean
  • AtomicInteger
  • AtomicLong

以AtomicInteger为例

AtomicInteger i = new AtomicInteger(0);

// 获取并自增(i = 0, 结果 i = 1, 返回 0),类似于 i++
System.out.println(i.getAndIncrement());

// 自增并获取(i = 1, 结果 i = 2, 返回 2),类似于 ++i
System.out.println(i.incrementAndGet());

// 自减并获取(i = 2, 结果 i = 1, 返回 1),类似于 --i
System.out.println(i.decrementAndGet());

// 获取并自减(i = 1, 结果 i = 0, 返回 1),类似于 i--
System.out.println(i.getAndDecrement()); 

// 获取并加值(i = 0, 结果 i = 5, 返回 0)
System.out.println(i.getAndAdd(5));

// 加值并获取(i = 5, 结果 i = 0, 返回 0)
System.out.println(i.addAndGet(-5));

// 获取并更新(i = 0, p 为 i 的当前值, 结果 i = -2, 返回 0) 
// 其中函数中的操作能保证原子,但函数需要无副作用 
System.out.println(i.getAndUpdate(p -> p - 2));

// 更新并获取(i = -2, p 为 i 的当前值, 结果 i = 0, 返回 0) 
// 其中函数中的操作能保证原子,但函数需要无副作用 
System.out.println(i.updateAndGet(p -> p + 2));

// 获取并计算(i = 0, p 为 i 的当前值, x 为参数1, 结果 i = 10, 返回 0)
// 其中函数中的操作能保证原子,但函数需要无副作用
// getAndUpdate 如果在 lambda 中引用了外部的局部变量,要保证该局部变量是 final 的
// getAndAccumulate 可以通过 参数1 来引用外部的局部变量,但因为其不在 lambda 中因此不必是 
final System.out.println(i.getAndAccumulate(10, (p, x) -> p + x));

// 计算并获取(i = 10, p 为 i 的当前值, x 为参数1, 结果 i = 0, 返回 0) 
// 其中函数中的操作能保证原子,但函数需要无副作用 
System.out.println(i.accumulateAndGet(-10, (p, x) -> p + x));

四、原子引用

为什么需要原子引用类型?

  • AtomicReference
  • AtomicMarkableReference
  • AtomicStampedReference

有如下方法:

public interface DecimalAccount { 
	// 获取余额
	BigDecimal getBalance(); 
	// 取款
	void withdraw(BigDecimal amount);
	
	/**
	* 方法内会启动 1000 个线程,每个线程做 -10 元 的操作 * 如果初始余额为 10000 那么正确的结果应当是 0
	*/
	static void demo(DecimalAccount account) { 
		List<Thread> ts = new ArrayList<>(); 
		for (int i = 0; i < 1000; i++) {
			ts.add(new Thread(() -> { 
				account.withdraw(BigDecimal.TEN);
			})); 
		}
		ts.forEach(Thread::start); 
		ts.forEach(t -> {
			try { 
				t.join();
			} catch (InterruptedException e) { 
				e.printStackTrace();
			} 
		});
		System.out.println(account.getBalance()); 
	}
}

试着提供不同的DecimalAccount实现,实现安全的取款操作

1、不安全实现

class DecimalAccountUnsafe implements DecimalAccount { 
	BigDecimal balance;
	public DecimalAccountUnsafe(BigDecimal balance) { 
		this.balance = balance;
	}
	
	@Override
	public BigDecimal getBalance() { 
		return balance;
	}
	
	@Override
	public void withdraw(BigDecimal amount) { 
		BigDecimal balance = this.getBalance(); 
		this.balance = balance.subtract(amount);
	} 
}

2、安全实现 - 使用锁

class DecimalAccountSafeLock implements DecimalAccount { 
	private final Object lock = new Object();
	BigDecimal balance;
	public DecimalAccountSafeLock(BigDecimal balance) { 
		this.balance = balance;
	}
	
	@Override
	public BigDecimal getBalance() { 
		return balance;
	}
	
	@Override
	public void withdraw(BigDecimal amount) { 
		synchronized (lock) {
			BigDecimal balance = this.getBalance();
			this.balance = balance.subtract(amount); 
		}
	} 
}

3、安全实现 - 使用CAS

class DecimalAccountSafeCas implements DecimalAccount { 
	AtomicReference<BigDecimal> ref;
	public DecimalAccountSafeCas(BigDecimal balance) { 
		ref = new AtomicReference<>(balance);
	}
	
	@Override
	public BigDecimal getBalance() { 
		return ref.get();
	}
	
	@Override
	public void withdraw(BigDecimal amount) { 
		while (true) {
			BigDecimal prev = ref.get();
			BigDecimal next = prev.subtract(amount); 
			if (ref.compareAndSet(prev, next)) {
				break; 
			}
		} 
	}
}

测试代码

DecimalAccount.demo(new DecimalAccountUnsafe(new BigDecimal("10000"))); DecimalAccount.demo(new DecimalAccountSafeLock(new BigDecimal("10000"))); DecimalAccount.demo(new DecimalAccountSafeCas(new BigDecimal("10000")));

运行结果
在这里插入图片描述

4、ABA问题及解决
4.1ABA问题

static AtomicReference<String> ref = new AtomicReference<>("A"); 
public static void main(String[] args) throws InterruptedException {
	log.debug("main start..."); // 获取值 A
	// 这个共享变量被它线程修改过? 
	String prev = ref.get(); 
	other();
	sleep(1);
	// 尝试改为 C
	log.debug("change A->C {}", ref.compareAndSet(prev, "C"));
}
private static void other() { 

	new Thread(() -> {
		log.debug("change A->B {}", ref.compareAndSet(ref.get(), "B")); 
	}, "t1").start();
	sleep(0.5);
	
	new Thread(() -> {
		log.debug("change B->A {}", ref.compareAndSet(ref.get(), "A"));
	}, "t2").start(); 
}

输出
在这里插入图片描述

  • 主线程仅能判断出共享变量的值与最初值A是否相同,不能感知到这种从A改为B又改回A的情况,如果主线程希望:
  • 只要有其它线程【动过了】共享变量,那么自己的cas就算失败,这时,仅比较值是不够的,需要再加一个版本号

AtomicStampedReference

static AtomicStampedReference<String> ref = new AtomicStampedReference<>("A", 0);
public static void main(String[] args) throws InterruptedException { 
	log.debug("main start...");
	// 获取值 A
	String prev = ref.getReference();
	// 获取版本号
	int stamp = ref.getStamp();
	log.debug("版本 {}", stamp);
	// 如果中间有其它线程干扰,发生了 ABA 现象
	other();
	sleep(1);
	// 尝试改为 C
	log.debug("change A->C {}", ref.compareAndSet(prev, "C", stamp, stamp + 1));
}
private static void other() { 

	new Thread(() -> {
		log.debug("change A->B {}", ref.compareAndSet(ref.getReference(), "B", ref.getStamp(), ref.getStamp() + 1));
		log.debug("更新版本为 {}", ref.getStamp()); 
	}, "t1").start();
	sleep(0.5);
	
	new Thread(() -> {
		log.debug("change B->A {}", ref.compareAndSet(ref.getReference(), "A", ref.getStamp(), ref.getStamp() + 1));
		log.debug("更新版本为 {}", ref.getStamp()); 
		}, "t2").start();
}

输出为:
在这里插入图片描述

  • AtomicStampedReference 可以给原子引用加上版本号,追踪原子引用整个的变化过程,如: A -> B -> A -> C ,通过AtomicStampedReference,我们可以知道,引用变量中途被更改了几次。
  • 但是有时候,并不关心引用变量更改了几次,只是单纯的关心是否更改过,所以就有了
    AtomicMarkableReference
    在这里插入图片描述

AtomicMarkableReference

class GarbageBag { 
String desc;
	public GarbageBag(String desc) { 
		this.desc = desc;
	}
	public void setDesc(String desc) { 
		this.desc = desc;
	}
	@Override
	public String toString() {
		return super.toString() + " " + desc;
	} 
}
@Slf4j
public class TestABAAtomicMarkableReference {
public static void main(String[] args) throws InterruptedException {
	GarbageBag bag = new GarbageBag("装满了垃圾");
	// 参数2 mark 可以看作一个标记,表示垃圾袋满了
	AtomicMarkableReference<GarbageBag> ref = new AtomicMarkableReference<>(bag, true);
	log.debug("主线程 start..."); 
	GarbageBag prev = ref.getReference(); 
	log.debug(prev.toString());
	
	new Thread(() -> {
		log.debug("打扫卫生的线程 start..."); 
		bag.setDesc("空垃圾袋");
		while (!ref.compareAndSet(bag, bag, true, false)) {} log.debug(bag.toString());
	}).start();
	
	Thread.sleep(1000);
	log.debug("主线程想换一只新垃圾袋?");
	boolean success = ref.compareAndSet(prev, new GarbageBag("空垃圾袋"), true, false); 
	log.debug("换了么?" + success);
	log.debug(ref.getReference().toString()); 
	}
}

输出
在这里插入图片描述

五、原子数组

  • AtomicIntegerArray
  • AtomicLongArray
  • AtomicReferenceArray

有如下方法

/**
参数1,提供数组、可以是线程不安全数组或线程安全数组 参数2,获取数组长度的方法
参数3,自增方法,回传 array, index 参数4,打印数组的方法
*/
// supplier 提供者 无中生有 ()->结果
// function 函数 一个参数一个结果 (参数)->结果 , BiFunction (参数1,参数2)->结果
// consumer 消费者 一个参数没结果 (参数)->void, BiConsumer (参数1,参数2)->
private static <T> void demo(
	Supplier<T> arraySupplier, 
	Function<T, Integer> lengthFun, 
	BiConsumer<T, Integer> putConsumer, 
	Consumer<T> printConsumer ) { 
	List<Thread> ts = new ArrayList<>(); 
	T array = arraySupplier.get();
	int length = lengthFun.apply(array); 
	for (int i = 0; i < length; i++) {
		// 每个线程对数组作 10000 次操作 
		ts.add(new Thread(() -> {
		for (int j = 0; j < 10000; j++) { 
			putConsumer.accept(array, j%length);
		} 
	}));
	}
	
	ts.forEach(t -> t.start()); // 启动所有线程 
	ts.forEach(t -> {
		try { 
			t.join();
		} catch (InterruptedException e) { 
			e.printStackTrace();
		}
	});// 等所有线程结束 
	printConsumer.accept(array);
}

1、不安全的数组

demo(
	()->new int[10],
	(array)->array.length,
	(array, index) -> array[index]++,
	array-> System.out.println(Arrays.toString(array))
);

结果:
在这里插入图片描述

2、安全的数组

demo(
	()-> new AtomicIntegerArray(10),
	(array) -> array.length(),
	(array, index) -> array.getAndIncrement(index), 
	array -> System.out.println(array)
);

结果:
在这里插入图片描述

六、字段更新器

  • AtomicReferenceFieldUpdater //域 字段
  • AtomicIntegerFieldUpdater
  • AtomicLongFieldUpdater

利用字段更新器,可以针对对象的某个域(Field)进行原子操作,只能配合 volatile 修饰的字段使用,否则会出现 异常
在这里插入图片描述

public class Test5 {
	private volatile int field;
	public static void main(String[] args) {
		AtomicIntegerFieldUpdater fieldUpdater = AtomicIntegerFieldUpdater.newUpdater(Test5.class, "field"); 
		Test5 test5 = new Test5();
		fieldUpdater.compareAndSet(test5, 0, 10); 
		
		// 修改成功 field = 10
		System.out.println(test5.field);
		
		// 修改成功 field = 20 
		fieldUpdater.compareAndSet(test5, 10, 20); 
		System.out.println(test5.field);
		
		// 修改失败 field = 20 
		fieldUpdater.compareAndSet(test5, 10, 30); 
		System.out.println(test5.field);
	} 
}

输出:
在这里插入图片描述

七、原子累加器

1、累加器性能比较

private static <T> void demo(Supplier<T> adderSupplier, Consumer<T> action) {
	T adder = adderSupplier.get();
	long start = System.nanoTime();
	List<Thread> ts = new ArrayList<>(); 
	// 4 个线程,每人累加 50 万
	for (int i = 0; i < 40; i++) {
		ts.add(new Thread(() -> {
			for (int j = 0; j < 500000; j++) {
				action.accept(adder); 
			}
		})); 
	}
	
	ts.forEach(t -> t.start()); 
	ts.forEach(t -> {
		try { 
			t.join();
		} catch (InterruptedException e) { 
			e.printStackTrace();
		} 
	});
	long end = System.nanoTime();
	System.out.println(adder + " cost:" + (end - start)/1000_000); 
}

比较AtomicLong与LongAdder

for (int i = 0; i < 5; i++) {
	demo(() -> new LongAdder(), adder -> adder.increment());
}
for (int i = 0; i < 5; i++) {
	demo(() -> new AtomicLong(), adder -> adder.getAndIncrement());
}

输出:
在这里插入图片描述

性能提升的原因很简单,就是在有竞争时,设置多个累加单元,Thread-0累加Cell[0],而Thread-1累加Cell[1]…最后将结果汇总。这样它们在累加时操作的不同的Cell变量,因此减少了CAS重试失败,从而提高性能。

2、源码之LongAdder

1、LongAdder是并发大师@author Doug Lea(大哥李)的作品,设计的非常精巧
2、LongAdder类有几个关键域

// 累加单元数组, 懒惰初始化 
transient volatile Cell[] cells;

// 基础值, 如果没有竞争, 则用 cas 累加这个域 
transient volatile long base;

// 在 cells 创建或扩容时, 置为 1, 表示加锁 
transient volatile int cellsBusy;

cas锁

// 不要用于实践!!! (容易造成代码出现空转现象)
public class LockCas {
	private AtomicInteger state = new AtomicInteger(0);
	public void lock() { 
		while (true) {
			if (state.compareAndSet(0, 1)) { 
				break;
			} 
		}
	}
	public void unlock() { 
		log.debug("unlock..."); 
		state.set(0);
	} 
}

测试

LockCas lock = new LockCas(); 
new Thread(() -> {
	log.debug("begin..."); 
	lock.lock();
	try {
		log.debug("lock...");
		sleep(1); 
	} finally {
		lock.unlock(); 
	}
}).start();

new Thread(() -> { 
	log.debug("begin..."); 
	lock.lock();
try {
	log.debug("lock..."); 
} finally {
	lock.unlock(); 
}
}).start();

输出:
在这里插入图片描述

3、原理之伪共享

其中Cell即为累加单元

// 防止缓存行伪共享 
@sun.misc.Contended 
static final class Cell {
	volatile long value; 
	Cell(long x) { 
		value = x; 
	}
	// 最重要的方法, 用来 cas 方式进行累加, prev 表示旧值, next 表示新值 
	final boolean cas(long prev, long next) {
		return UNSAFE.compareAndSwapLong(this, valueOffset, prev, next); 
	}
	// 省略不重要代码
}

1、得从缓存说起
2、缓存与内存的速度比较

在这里插入图片描述
在这里插入图片描述

  • 因为CPU与内存的速度差异很大,需要靠预读数据至缓存来提升效率;

  • 而缓存以缓存为单位,每个缓存行对应着一块内存,一般是64byte(8个long)

  • 缓存的加入会造成数据副本的产生,即同一份数据会缓存在不同核心的缓存行中

  • CPU要保证数据的一致性,如果某个CPU核心更改了数据,其它CPU核心对应的整个缓存行必须失效
    在这里插入图片描述

  • 因为Cell是数组形式,在内存中是连续存储的,一个Cell为24字节(16字节的对象头和8字节的value),因此缓存行可以存下2个的Cell对象。这样问题来了:
    – Core-0要修改Cell[0]
    – Core-1要修改Cell[1]

  • 无论谁修改成功,都会导致对方Core的缓存行失效,比如Core-0中Cell[0] = 6000,Cell[1] = 8000要累加Cell[0] = 6001,Cell[1] = 8000,这时会让Core-1 的缓存行失效;

  • @sun.misc.Contended用来解决这个问题,它的原理是在使用此注解的对象或字段的前后各增加128字节大小的padding,从而让CPU将对象预读至缓存时占用不同的缓存行,这样,不会造成对方缓存行的失效。
    在这里插入图片描述

累加主要调用下面的方法

public void add(long x) { 
	// as 为累加单元数组 
	// b 为基础值
	// x 为累加值
	Cell[] as; long b, v; int m; Cell a; 
	// 进入 if 的两个条件
	
	// 1. as 有值, 表示已经发生过竞争, 进入 if
	// 2. cas 给 base 累加时失败了, 表示 base 发生了竞争, 进入 if 
	if ((as = cells) != null || !casBase(b = base, b + x)) {
		// uncontended 表示 cell 没有竞争 
		boolean uncontended = true;
		if (
			// as 还没有创建
			as == null || (m = as.length - 1) < 0 ||
			// 当前线程对应的 cell 还没有
			(a = as[getProbe() & m]) == null ||
			// cas 给当前线程的 cell 累加失败 uncontended=false ( a 为当前线程的 cell ) 
			!(uncontended = a.cas(v = a.value, v + x))
		){
			// 进入cell数组创建、cell创建的流程
			longAccumulate(x, null, uncontended); 
		}
	} 
}
 

add流程图:
在这里插入图片描述

final void longAccumulate(long x, LongBinaryOperator fn, boolean wasUncontended) {
	int h;
	// 当前线程还没有对应的 cell, 需要随机生成一个 h 值用来将当前线程绑定到 cell 
	if ((h = getProbe()) == 0) {
		// 初始化 probe 
		ThreadLocalRandom.current();
		// h 对应新的 probe 值, 用来对应 cell 
		h = getProbe();
		wasUncontended = true;
	}
	// collide 为 true 表示需要扩容 
	boolean collide = false;
	for (;;) {
	Cell[] as; Cell a; int n; long v;
	// 已经有了 cells
	if ((as = cells) != null && (n = as.length) > 0) {
		// 还没有 cell
	if ((a = as[(n - 1) & h]) == null) {
		// 为 cellsBusy 加锁, 创建 cell, cell 的初始累加值为 x 
		// 成功则 break, 否则继续 continue 循环
	}
	// 有竞争, 改变线程对应的 cell 来重试 cas 
	else if (!wasUncontended)
		wasUncontended = true;
	// cas 尝试累加, fn 配合 LongAccumulator 不为 null, 配合 LongAdder 为 null 
	else if (a.cas(v = a.value, ((fn == null) ? v + x : fn.applyAsLong(v, x))))
		break;
	// 如果 cells 长度已经超过了最大长度, 或者已经扩容, 改变线程对应的 cell 来重试 cas 
	else if (n >= NCPU || cells != as)
		collide = false;
	// 确保 collide 为 false 进入此分支, 就不会进入下面的 else if 进行扩容了 
	else if (!collide)
		collide = true; // 加锁
	else if (cellsBusy == 0 && casCellsBusy()) { 
		// 加锁成功, 扩容
		continue; 
	}
		// 改变线程对应的 cell
		h = advanceProbe(h); 
	}
	// 还没有 cells, 尝试给 cellsBusy 加锁
	else if (cellsBusy == 0 && cells == as && casCellsBusy()) {
		// 加锁成功, 初始化 cells, 最开始长度为 2, 并填充一个 cell
		// 成功则 break; 
	}
	// 上两种情况失败, 尝试给 base 累加
	else if (casBase(v = base, ((fn == null) ? v + x : fn.applyAsLong(v, x))))
		break; 
	}
}

longAccumulate流程图:
在这里插入图片描述
在这里插入图片描述

每个线程刚进入longAccumlate时,会尝试对应一个cell对象(找到一个坑位)
在这里插入图片描述

获取最终结果通过sum方法

public long sum() {
	Cell[] as = cells; Cell a; 
	long sum = base;
	if (as != null) {
		for (int i = 0; i < as.length; ++i) { 
			if ((a = as[i]) != null){
				sum += a.value();
			} 
		}
	return sum; 
}

八、Unsafe

1、概述

Unsafe对象提供了非常底层的,操作内存、线程的方法,Unsafe对象不能直接调用,只能通过反射获得

public class UnsafeAccessor { 
	static Unsafe unsafe;
	static { 
		try {
			Field theUnsafe = Unsafe.class.getDeclaredField("theUnsafe"); 
			theUnsafe.setAccessible(true);
			unsafe = (Unsafe) theUnsafe.get(null);
		} catch (NoSuchFieldException | IllegalAccessException e) { 
			throw new Error(e);
		} 
	}
	static Unsafe getUnsafe() { 
		return unsafe;
	} 
}

2、Unsafe CAS操作

@Data
class Student {
	volatile int id; 
	volatile String name;
}
Unsafe unsafe = UnsafeAccessor.getUnsafe();
Field id = Student.class.getDeclaredField("id");
Field name = Student.class.getDeclaredField("name");
// 获得成员变量的偏移量
long idOffset = UnsafeAccessor.unsafe.objectFieldOffset(id); 
long nameOffset = UnsafeAccessor.unsafe.objectFieldOffset(name);

Student student = new Student();
// 使用 cas 方法替换成员变量的值
UnsafeAccessor.unsafe.compareAndSwapInt(student, idOffset, 0, 20); // 返回 true 
UnsafeAccessor.unsafe.compareAndSwapObject(student, nameOffset, null, "张三"); // 返回 true

System.out.println(student);

输出:
在这里插入图片描述

使用自定义的AtomicData实现之前线程安全的原子整数Account实现

class AtomicData {
	private volatile int data; 
	static final Unsafe unsafe; 
	static final long DATA_OFFSET;
	static {
		unsafe = UnsafeAccessor.getUnsafe(); 
		try {
			// data 属性在 DataContainer 对象中的偏移量,用于 Unsafe 直接访问该属性
			DATA_OFFSET = unsafe.objectFieldOffset(AtomicData.class.getDeclaredField("data")); 
		} catch (NoSuchFieldException e) {
			throw new Error(e); 
		}
	}
	public AtomicData(int data) { 
		this.data = data;
	}
	public void decrease(int amount) { 
		int oldValue;
		while(true) {
			// 获取共享变量旧值,可以在这一行加入断点,修改 data 调试来加深理解
			oldValue = data;
			// cas 尝试修改 data 为 旧值 + amount,如果期间旧值被别的线程改了,返回 false
			if (unsafe.compareAndSwapInt(this, DATA_OFFSET, oldValue, oldValue - amount)) {
				return; 
			}
		} 
	}
	public int getData() {
		return data;
	}
}

Account实现

Account.demo(new Account() {
	AtomicData atomicData = new AtomicData(10000); 
	@Override
	public Integer getBalance() {
		return atomicData.getData(); 
	}
	@Override
	public void withdraw(Integer amount) { 
		atomicData.decrease(amount);
	} 
});

本章小结

  • CAS与volatile

  • API
    – 原子整数
    – 原子引用
    – 原子数组
    – 字段更新器
    – 原子累加器

  • Unsafe

  • 原理方面(重要)
    – LongAdder源码
    – 伪共享

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值