深度学习模型复杂度评估(时间复杂度、空间复杂度)

文章介绍了时间复杂度和空间复杂度作为评估算法效率的关键指标,特别是在深度学习中,通过FLOPs估算模型的计算量,以及模型参数数量对训练和预测速度、过拟合风险的影响。高复杂度可能导致训练慢、预测耗时,且参数过多易引发过拟合问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1、两个指标

2、复杂度对模型的影响


1、两个指标

时间复杂度和空间复杂度是衡量一个算法的两个重要指标,用于表示算法的最差状态所需的时间增长量和所需辅助空间.

在深度学习神经网络模型中我们也通过:

  • 计算量/FLOPs(时间复杂度)即模型的运算次数。floating point operations (s表示复数),指的是浮点运算次数,理解为计算量
  • 访存量/Bytes(空间复杂度)即模型的参数数量

PS: FLOPs 是模型推理时间的一个参考量,但并不能百分百表示该模型推理时间的长短,
因为乘法和加法计算不一样,乘法的时间一般是加法时间的四倍,但现在有很多优化卷积
层的计算算法,可能把乘法计算时间缩为加法的两倍不等,所以FLOPs只是个估量的指标,
不是决定推理时间长短的指标。即FLOPs越小并不代表着模型推理时间越短

这两个指标来评判深度学习模型的性能

所以我们经常在论文里面看到类似如下的图就可以理解其含义了:

2、复杂度对模型的影响

  • 时间复杂度决定了模型的训练/预测时间。

 如果复杂度过高,会导致模型训练和预测耗费大量时间,既无法快速的验证想法和改善模型,也无法做到快速的预测。

  • 空间复杂度决定了模型的参数数量。

由于维度灾难的限制,模型的参数越多,训练模型所需的数据量就越大,而现实生活中的数据集通常不会太大,这会导致模型的训练更容易过拟合。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清纯世纪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值