深度学习模型复杂度评估(时间复杂度、空间复杂度)

目录

1、两个指标

2、复杂度对模型的影响


1、两个指标

时间复杂度和空间复杂度是衡量一个算法的两个重要指标,用于表示算法的最差状态所需的时间增长量和所需辅助空间.

在深度学习神经网络模型中我们也通过:

  • 计算量/FLOPs(时间复杂度)即模型的运算次数。floating point operations (s表示复数),指的是浮点运算次数,理解为计算量
  • 访存量/Bytes(空间复杂度)即模型的参数数量

PS: FLOPs 是模型推理时间的一个参考量,但并不能百分百表示该模型推理时间的长短,
因为乘法和加法计算不一样,乘法的时间一般是加法时间的四倍,但现在有很多优化卷积
层的计算算法,可能把乘法计算时间缩为加法的两倍不等,所以FLOPs只是个估量的指标,
不是决定推理时间长短的指标。即FLOPs越小并不代表着模型推理时间越短

这两个指标来评判深度学习模型的性能

所以我们经常在论文里面看到类似如下的图就可以理解其含义了:

2、复杂度对模型的影响

  • 时间复杂度决定了模型的训练/预测时间。

 如果复杂度过高,会导致模型训练和预测耗费大量时间,既无法快速的验证想法和改善模型,也无法做到快速的预测。

  • 空间复杂度决定了模型的参数数量。

由于维度灾难的限制,模型的参数越多,训练模型所需的数据量就越大,而现实生活中的数据集通常不会太大,这会导致模型的训练更容易过拟合。

  • 0
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
常用的深度学习模型包括卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆网络(LSTM)、门控循环单元(GRU)等。以下是它们的优缺点: 1. 卷积神经网络(CNN): - 优点:对于图像和空间数据具有良好的特征提取能力,能够捕捉到局部和全局的空间结构信息;参数共享和局部连接使得模型具有较高的计算效率。 - 缺点:对于序列数据和变长输入的处理相对有限;对于大尺寸图像需要较大的计算资源。 2. 循环神经网络(RNN): - 优点:能够处理序列数据和变长输入,具有记忆能力,可以捕捉到时间相关性;适用于自然语言处理、语音识别等任务。 - 缺点:难以并行化计算,长期依赖问题导致训练困难;容易出现梯度消失和梯度爆炸问题。 3. 长短期记忆网络(LSTM): - 优点:解决了传统RNN中的长期依赖问题,具有更好的记忆能力,适用于需要较长记忆的任务。 - 缺点:相比于普通RNN,LSTM模型复杂度较高,训练过程相对较慢。 4. 门控循环单元(GRU): - 优点:相比于LSTM模型,GRU模型参数更少,计算复杂度较低;在一些任务上能够取得与LSTM相当的性能。 - 缺点:相对于普通RNN,GRU模型仍然存在长期依赖问题;在某些复杂任务上可能性能不如LSTM。 这些模型各有特点,在不同的任务和数据类型上表现出不同的优势和劣势。选择适合的模型需要根据具体的问题和数据特点进行评估和比较。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清纯世纪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值