随机变量及其分布之一维随机变量

1.一维随机变量

​ 首先需要介绍,分布函数和密度函数的概念,离散型和连续型都有分布函数,定义为:
P ( X ≤ k ) = F ( x ) P(X\le k) = F(x) P(Xk)=F(x)
F ( x ) F(x) F(x)为分布函数,简写为 d f df df

对于连续型随机变量而言,F(x)还可以写成如下形式:
F ( x ) = ∫ − ∞ x f ( x ) d x F(x)=\int_{-\infty}^{x}f(x)dx F(x)=xf(x)dx
其中 f ( x ) f(x) f(x)称为连续型随机变量的概率密度函数,简写为 p f pf pf.

而对于离散性随机变量, F ( x ) F(x) F(x)也可写成;
F ( x ) = Σ x = 1 k P ( X = k ) F(x)=\Sigma_{x=1}^{k}P(X=k) F(x)=Σx=1kP(X=k)
其中 P ( X = k ) P(X=k) P(X=k)称为离散型随机变量的密度函数。

分布函数的性质

单调非降  
在某一点的概率为0

1.1离散型随机变量

1.1.1常见的离散分布

(1)均匀分布
(2)二项分布
(3)0-1分布
(4)泊松分布(poisson)
P ( X = k ) = e − λ ∗ λ k k ! P(X=k)=e^{-\lambda}*\frac{\lambda^k}{k!} P(X=k)=eλk!λk
泊松分布中,参数 λ \lambda λ的含义是单位时间内事件发生的次数,记为 X ∼ P ( λ ) X\sim P(\lambda) XP(λ),泊松分布的用途——可以用来进行稀有事件的计算,同时也可以在 n n n比较大, p p p比较小时作为二项分布的一种近似。此时,参数 λ = n ∗ p \lambda=n*p λ=np
(5)几何分布
几何分布定义为,在 n n n次独立伯努利实验中,事件第 k k k次发生的概率
P ( X = k ) = p × ( 1 − p ) k − 1 P(X=k)=p \times (1-p)^{k-1} P(X=k)=p×(1p)k1
注意,几何分布不具有记忆性,即:
P ( X = t + s ∣ X = t ) = P ( X = t ) P(X=t+s|X=t)=P(X=t) P(X=t+sX=t)=P(X=t)
(6)超几何分布(不放回抽样)

1.2连续型随机变量

(1)均匀分布——uniform df
其密度函数为
f ( x ) = { 1 b − a a < x < b 0 x ≤ a o r x ≥ b f(x)=\left \{ \begin{aligned} &\frac{1}{b-a}\quad a<x<b &\\ & 0 \quad x\leq a \quad or \quad x\geq b &\\ \end{aligned} \right. f(x)=ba1a<x<b0xaorxb
若定义示性函数为
I ( a , b ) x = { 1 a < x < b 0 x ≤ a o r x ≥ b I_{(a,b)}^{x} = \left \{ \begin{aligned} & 1 \quad a<x<b &\\ & 0 \quad x\leq a \quad or \quad x\geq b &\\ \end{aligned} \right. I(a,b)x={1a<x<b0xaorxb
则均匀分布的密度函数可写为
f ( x ) = 1 b − a × I ( a , b ) x f(x)=\frac{1}{b-a}\times I_{(a,b)}^x f(x)=ba1×I(a,b)x

(2)指数分布
密度函数为
f ( x ) = λ × e − λ x × I ( 0 , ∞ ) x f(x)=\lambda\times e^{-\lambda x}\times I_{(0,\infty)}^{x} f(x)=λ×eλx×I(0,)x
分布函数为
F ( x ) = ( 1 − e − λ x ) × I ( 0 , ∞ ) x F(x)=(1-e^{-\lambda x})\times I_{(0,\infty)}^{x} F(x)=(1eλx)×I(0,)x
注意:指数分布也无记忆性
(3)正态分布 normal
其密度函数为
f ( x ) = 1 2 π × σ × e − ( x − μ ) 2 2 σ 2 f(x)=\frac{1}{\sqrt{2\pi}\times\sigma}\times e^{-\frac{(x-\mu)^2}{2\sigma^2}} f(x)=2π ×σ1×e2σ2(xμ)2
记为 X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) XN(μ,σ2)

特别的,当 μ = 0 , σ = 1 \mu = 0,\sigma = 1 μ=0,σ=1时,称为标准正态分布
三倍标准差原则

正态分布可以变为标准正态分布,只需要做一个简单替换:
y = x − μ σ y=\frac{x-\mu}{\sigma} y=σxμ
那么,变换后的 y y y是服从于标准正态的

1.3随机变量函数的分布——牢记定义

X X X是随机变量时,那么 Y = g ( X ) Y=g(X) Y=g(X)的分布称为随机变量函数的分布 ,那么由定义,要求 Y Y Y分布,即
P ( Y ≤ y ) = F ( y ) P(Y\leq y)=F(y) P(Yy)=F(y)
那么根据定义,我们求解的过程为:
F ( y ) = P ( Y ≤ y ) = P ( g ( X ) ≤ y ) = ∫ g ( x ) ≤ y f ( x ) d x F(y) = P(Y\leq y) \\ = P(g(X)\leq y)\\ = \int_{g(x)\leq y} f(x)dx F(y)=P(Yy)=P(g(X)y)=g(x)yf(x)dx

以上是连续型随机变量函数分布求法
定理
假设 X X X是连续型随机变量,假设 Y = g ( X ) Y=g(X) Y=g(X)定义为单调函数(必须是严格单调),那么 Y Y Y的密度函数为
f y ( x ) = f ( h ( y ) ) × ∣ h ′ ( y ) ∣ 其 中 f y ( y ) 代 表 Y 的 密 度 函 数 , h ( y ) 是 g ( x ) 的 反 函 数 f_y(x) = f(h(y))\times|h^{'}(y)| \quad 其中f_y(y)代表Y的密度函数,h(y)是g(x)的反函数 fy(x)=f(h(y))×h(y)fy(y)Yh(y)g(x)

1.4 补充知识点

1.4.1

标准正态分布的性质
ϕ ( x ) + ϕ ( − x ) = 1 其 中 ϕ 为 标 准 正 态 分 布 的 分 布 函 数 \phi(x)+\phi(-x)=1 \quad 其中\phi为标准正态分布的分布函数 ϕ(x)+ϕ(x)=1ϕ

1.4.2

若 X ∼ N ( μ , σ 2 ) , Y = a x + b , 那 么 Y ∼ N ( a μ + b , μ 2 σ 2 ) 若X\sim N(\mu,\sigma^2),Y=ax+b,那么Y \sim N(a\mu+b,\mu^2\sigma^2) XN(μ,σ2),Y=ax+b,YN(aμ+b,μ2σ2)

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值