Day02-概率论与数理统计-一维随机变量及其分布(DataWhale)

二、随机变量

事件: { X = a } \{X=a\} {X=a};事件的概率 P { X = a } P\{X=a\} P{X=a}

离散型随机变量:有限个或者无限可列

非离散型随机变量:连续型

2.1 离散型随机变量及其概率分布

X X X的所有取值 x k ( k = 1 , 2 , . . . ) x_k(k=1,2,...) xk(k=1,2,...)【可以取无穷个,但是要可列】

概率函数分布: P ( X = x k ) = P k P(X=x_k)=P_k P(X=xk)=Pk

  • p k ≥ 0 p_k \geq 0 pk0
  • ∑ p k = 1 \sum p_k=1 pk=1
2.2 连续型随机变量及其概率密度函数

频数直方图:纵坐标是频数

频率密度直方图:纵坐标是【频率/组距】

  • 每个小长方形的面积是该组的频率
  • 长方形的面积总和是1
  • 介于 x = a , x = b x=a,x=b x=a,x=b的长方形面积近似于 ( a , b ] (a,b] (a,b]的面积

概率密度函数:非负可积 f ( x ) , f ( x ) ≥ 0 f(x),f(x)\geq 0 f(x),f(x)0,使得对任意的实数 a ≤ b a\leq b ab 都有 P { a < x ≤ b } = ∫ a b f ( x ) d x P\{a<x\leq b\}=\int_a^bf(x)dx P{a<xb}=abf(x)dx,则 X X X为连续型随机变量, f ( x ) f(x) f(x)称为 X X X的概率密度函数

  • f ( x ) ≥ 0 f(x)\geq 0 f(x)0

  • ∫ − ∞ + ∞ f ( x ) = 1 \int_{-\infty}^{+\infty} f(x) =1 +f(x)=1 【求参数】

  • 连续型随机变量取单个值得概率为0

P { x < X ≤ x + Δ x } ≈ f ( x ) Δ x P\{x<X\leq x+\Delta x\} \approx f(x)\Delta x P{x<Xx+Δx}f(x)Δx 表示 X X X 落在小区间 ( x , x + Δ x ] (x,x+\Delta x] (x,x+Δx]上的概率近似的等于 f ( x ) Δ x f(x)\Delta x f(x)Δx

三、分布函数

针对离散型和连续型都成立

分布函数== F ( x ) = P ( X ≤ x ) F(x)=P(X\leq x) F(x)=P(Xx) X X X取值不超过 x x x的概率 x ∈ ( − ∞ , + ∞ ) ; F ( x ) ∈ [ 0 , 1 ] x\in(-\infty,+\infty);F(x)\in[0,1] x(,+);F(x)[0,1]】==

  • 0 ≤ F ( x ) ≤ 1 0\leq F(x) \leq1 0F(x)1
  • F ( x ) F(x) F(x) x x x的不减函数,即 x 1 < x 2 , F ( x 1 ) ≤ F ( x 2 ) x_1<x_2,F(x_1)\leq F(x_2) x1<x2,F(x1)F(x2)
  • l i m x → + ∞ F ( x ) = F ( + ∞ ) = 1 , l i m x → − ∞ F ( x ) = F ( − ∞ ) = 0 lim_{x \rightarrow +\infty}F(x)=F(+\infty)=1,lim_{x \rightarrow -\infty}F(x)=F(-\infty)=0 limx+F(x)=F(+)=1,limxF(x)=F()=0 【求解参数问题时使用】
  • 离散型: F ( x ) F(x) F(x)右连续;连续型: F ( x ) F(x) F(x)连续 并且至多可列个间断点【连续:极限存在,函数值存在,极限值等于函数值】

计算:

  • P ( X ≤ a ) = F ( a ) P(X \leq a) =F(a) P(Xa)=F(a)
  • P ( X > a ) = 1 − F ( a ) P(X>a) = 1-F(a) P(X>a)=1F(a)
  • P ( a < x ≤ b ) = P ( x ≤ b ) − P ( x ≤ a ) = F ( b ) − F ( a ) P(a<x\leq b)=P(x\leq b)-P(x\leq a)=F(b)-F(a) P(a<xb)=P(xb)P(xa)=F(b)F(a)
  • P ( x = a ) = F ( a ) − F ( a − 0 ) P(x=a)=F(a)-F(a-0) P(x=a)=F(a)F(a0)
  • P ( a ≤ x ≤ b ) = F ( b ) − F ( a − 0 ) P(a\leq x \leq b) = F(b)-F(a-0) P(axb)=F(b)F(a0)
  • P ( X < a ) = F ( a − 0 ) P(X<a) =F(a-0) P(X<a)=F(a0)
  • P ( X ≥ a ) = 1 − F ( a − 0 ) P(X\geq a) = 1-F(a-0) P(Xa)=1F(a0)
5.1 离散型随机变量
  1. 有密度函数求分布函数

离散型随机变量的分布函数区间范围,左边取等号,右边不取等号,左闭右开,整个范围要包含 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)

  1. 有分布函数求密度函数

间断点 x k x_k xk X X X的取值, P ( X = x k ) = F ( x k ) − F ( x k − 0 ) P(X=x_k)=F(x_k)-F(x_k-0) P(X=xk)=F(xk)F(xk0) F ( x k − 0 ) : x k 向 左 挪 一 点 的 值 F(x_k-0):x_k向左挪一点的值 F(xk0)xk

5.2 连续型随机变量

F ( x ) = P ( X ≤ x ) = ∫ − ∞ x f ( t ) d t , F ′ ( x ) = f ( x ) F(x)=P(X\leq x)=\int_{-\infty}^x f(t)dt,F'(x)=f(x) F(x)=P(Xx)=xf(t)dt,F(x)=f(x)

分布函数带参数,求参数:

  1. 利用负无穷为0,正无穷为1

  2. 利用连续性

5.3 离散型随机分布
5.3.1 0-1分布

P ( X = k ) = p k ( 1 − p ) 1 − k , k = { 0 , 1 } P(X=k)=p^k(1-p)^{1-k},k=\{0,1\} P(X=k)=pk(1p)1k,k={0,1}

X = 1 , P = p ; X = 0 , P = 1 − p X=1,P=p;X=0,P=1-p X=1,P=p;X=0,P=1p

  • 有两种结果
  • 试验只做一次
5.3.2 几何分布 G ( p ) G(p) G(p)

P ( A ) = p P(A)=p P(A)=p,第 k k k首次出现,前 k − 1 k-1 k1 次未出现

P ( X = k ) = ( 1 − p ) k − 1 p , X ∼ G ( p ) P(X=k)=(1-p)^{k-1}p,X\sim G(p) P(X=k)=(1p)k1pXG(p)

5.3.3 二项分布 B ( n , p ) B(n,p) B(n,p)

P ( A ) = p P(A)=p P(A)=p n n n 次试验,发生 k k k

P ( X = k ) = C n k p k ( 1 − p ) n − k , X ∼ B ( n , p ) P(X=k)=C_n^kp^k(1-p)^{n-k},X\sim B(n,p) P(X=k)=Cnkpk(1p)nkXB(n,p)

最可能值: ( n + 1 ) p (n+1)p (n+1)p 不为整数时, [ ( n + 1 ) p ] [(n+1)p] [(n+1)p](取整)达到最值; ( n + 1 ) p (n+1)p (n+1)p 是整数时, ( n + 1 ) p , ( n + 1 ) p − 1 (n+1)p,(n+1)p-1 (n+1)p,(n+1)p1 是最值

5.3.4 泊松分布 P ( λ ) P(\lambda) P(λ)

P ( X = k ) = λ k k ! e − λ , X ∼ P ( λ ) P(X=k)=\frac{\lambda^k}{k!}e^{-\lambda},X\sim P(\lambda) P(X=k)=k!λkeλXP(λ) λ > 0 \lambda > 0 λ>0

  • 电台收到的呼叫次数、公用设备【等车、收银台、挂号处】符合泊松分布
5.3.5 超几何分布

N N N个元素, N 1 N_1 N1个属于第一类, N 2 N_2 N2个属于第二类,取 n n n个, X : n X:n Xn个属于第一类的个数

P ( X = k ) = C N 1 k C N 2 n − k C N n P(X=k)=\frac{C_{N_1}^kC_{N_2}^{n-k}}{C_N^n} P(X=k)=CNnCN1kCN2nk k = 0 , 1 , . . . , m i n { n , N 1 } k=0,1,...,min\{n,N_1\} k=0,1,...,min{n,N1}

当N很大,n相对于N很小时,超几何分布近似用二项分布,二项分布 n ≥ 100 , n p ≤ 10 n\geq 100,np\leq10 n100,np10用泊松分布近似二项分布 λ = n p \lambda=np λ=np

5.4 连续型随机分布
5.4.1 均匀分布 U [ a , b ] U[a,b] U[a,b]

f ( x ) = { 1 b − a a ≤ x ≤ b 0 e l s e f(x)=\begin{cases} \frac{1}{b-a} & a\leq x\leq b \\ 0 &else \end{cases} f(x)={ba10axbelse

F ( x ) = { 0 x < a x − a b − a a ≤ x ≤ b 1 b ≤ x F(x)=\begin{cases} 0 & x<a \\ \frac{x-a}{b-a} & a\leq x \leq b \\ 1 & b\leq x \end{cases} F(x)=0baxa1x<aaxbbx

5.4.2 指数分布 E x p ( λ ) Exp(\lambda) Exp(λ)

f ( x ) = { λ e − λ x x > 0 0 x ≤ 0 f(x) =\begin{cases} \lambda e^{-\lambda x} & x>0 \\ 0 & x\leq 0 \end{cases} f(x)={λeλx0x>0x0 λ \lambda λ>0】

F ( x ) = { 1 − e − λ x x > 0 0 x ≤ 0 F(x) =\begin{cases} 1-e^{-\lambda x} &x>0 \\ 0 & x\leq0 \end{cases} F(x)={1eλx0x>0x0

无记忆性: P ( X > s + t ∣ X > s ) = P ( X > t ) P(X>s+t|X>s)=P(X>t) P(X>s+tX>s)=P(X>t),例如:一个元件已使用了 s 小时,总共使用至少 s+t 小时的条件概率,与从开始使用时算起至少能使用 t 小时的概率相等

5.4.3 正态分布 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2)

ϕ ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 \phi(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}} ϕ(x)=2π σ1e2σ2(xμ)2, − ∞ < x < ∞ -\infty<x<\infty <x<

性质:

  • μ \mu μ 为对称轴, x = μ x=\mu x=μ时取最大值 1 2 π σ \frac{1}{\sqrt{2\pi}\sigma} 2π σ1
  • 以x轴为渐近线, x ± σ x\pm \sigma x±σ为拐点
  • σ \sigma σ固定, μ \mu μ变化:左右移动; μ \mu μ固定, σ \sigma σ变小:最高点上移变陡, σ \sigma σ变大:最高点下移变缓

标准正态分布

μ = 0 ; σ = 1 \mu =0 ;\sigma=1 μ=0;σ=1

ϕ 0 ( x ) = 1 2 π e − x 2 2 \phi_0(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}2} ϕ0(x)=2π 1e2x2

Φ 0 ( x ) = 1 2 π ∫ − ∞ x e − t 2 2 d t \Phi_0(x)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^x e^{-\frac{t^2}2}dt Φ0(x)=2π 1xe2t2dt

性质:

  • y轴对称
  • ϕ 0 ( x ) = ϕ 0 ( − x ) \phi_0(x)=\phi_0(-x) ϕ0(x)=ϕ0(x)
  • Φ 0 ( − x ) = 1 − Φ 0 ( x ) \Phi_0(-x) = 1-\Phi_0(x) Φ0(x)=1Φ0(x)

x > 5 , x < − 5 则 ϕ 0 ( x ) = 0 ; x > 5 , Φ 0 ( x ) = 1 , x < − 5 , Φ 0 ( x ) = 0 x>5,x<-5则\phi_0(x)=0;x>5,\Phi_0(x)=1,x<-5,\Phi_0(x)=0 x>5,x<5ϕ0(x)=0x>5,Φ0(x)=1,x<5,Φ0(x)=0

正态分布与标准正态分布的转换 ϕ ( x ) = 1 σ ϕ 0 ( x − μ σ ) \phi(x)=\frac{1}{\sigma}\phi_0({\frac{x-\mu}{\sigma})} ϕ(x)=σ1ϕ0(σxμ) Φ ( x ) = Φ 0 ( x − μ σ ) \Phi(x)=\Phi_0(\frac{x-\mu}{\sigma}) Φ(x)=Φ0(σxμ)

3 σ 3\sigma 3σ法则

在这里插入图片描述

四、随机变量的函数的分布

4.1 离散型

有重复的概率相加,没有重复的直接写原随机变量的概率,随机变量变为随机变量的函数

在这里插入图片描述

{ X = − 1 P ( Y = 4 ) = 0.2 X = 0 P ( Y = 1 ) = 0.3 X = 1 P ( Y = 0 ) = 0.1 X = 2 P ( Y = 1 ) = 0.4 \begin{cases} X=-1 & P(Y=4)=0.2 \\ X=0 & P(Y=1)=0.3 \\ X=1 & P(Y=0) = 0.1 \\ X=2 & P(Y=1) =0.4 \end{cases} X=1X=0X=1X=2P(Y=4)=0.2P(Y=1)=0.3P(Y=0)=0.1P(Y=1)=0.4
在这里插入图片描述

4.2 连续型

{ F X ( x ) = P ( X ≤ x ) F Y ( x ) = P ( Y ≤ x ) \begin{cases}F_X(x)=P(X\leq x) \\ F_Y(x)=P(Y\leq x)\end{cases} {FX(x)=P(Xx)FY(x)=P(Yx)

先通过X的分布函数求出Y的分布函数,然后再求导求出Y的概率密度函数

例:

X 的 概 率 密 度 函 数 f X ( x ) , Y = 3 X + 2 X的概率密度函数f_X(x),Y=3X+2 XfX(x),Y=3X+2

求解:

F Y ( x ) = P ( Y ≤ x ) = P ( 3 X + 2 ≤ x ) = P ( X ≤ x − 2 3 ) = F X ( x − 2 3 ) F_Y(x)=P(Y\leq x)=P(3X+2\leq x)=P(X\leq \frac{x-2}{3})=F_X(\frac{x-2}{3}) FY(x)=P(Yx)=P(3X+2x)=P(X3x2)=FX(3x2)

F Y ( x ) F_Y(x) FY(x)求导得概率密度函数: f Y ( x ) = 1 3 f X ( x − 2 3 ) f_Y(x)=\frac{1}{3}f_X(\frac{x-2}{3}) fY(x)=31fX(3x2)

f X ( x ) = { 1 4 0 ≤ x ≤ 4 0 e l s e f_X(x)=\begin{cases}\frac{1}{4} & 0\leq x\leq 4\\ 0 & else\end{cases} fX(x)={4100x4else

f Y ( x ) = { 1 12 2 ≤ x ≤ 14 0 e l s e f_Y(x)=\begin{cases} \frac{1}{12} & 2\leq x\leq14 \\ 0& else \end{cases} fY(x)={12102x14else

X X X服从[a,b]上的均匀分布, Y = k X + c ( k ≠ 0 ) Y=kX+c(k\neq0) Y=kX+c(k=0)服从 { [ k a + c , k b + c ] k > 0 [ k b + c , k a + c ] k < 0 \begin{cases} [ka+c,kb+c] & k>0 \\ [kb+c,ka+c] & k<0\end{cases} {[ka+c,kb+c][kb+c,ka+c]k>0k<0上的均匀分布

X X X服从正态分布 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2) Y = a X + b ( a ≠ 0 ) Y=aX+b(a\neq0) Y=aX+b(a=0)服从 N ( a μ + b , a 2 σ 2 ) N(a\mu+b,a^2\sigma^2) N(aμ+b,a2σ2)

定理: X 的 密 度 函 数 f X ( x ) , Y = k X + b ( k ≠ 0 ) , 则 f Y ( x ) = 1 ∣ k ∣ f X ( x − b k ) X的密度函数f_X(x),Y=kX+b(k\neq 0),则f_Y(x)=\frac{1}{|k|}f_X(\frac{x-b}{k}) XfX(x),Y=kX+b(k=0),fY(x)=k1fX(kxb)

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
资源包主要包含以下内容: ASP项目源码:每个资源包中都包含完整的ASP项目源码,这些源码采用了经典的ASP技术开发,结构清晰、注释详细,帮助用户轻松理解整个项目的逻辑和实现方式。通过这些源码,用户可以学习到ASP的基本语法、服务器端脚本编写方法、数据库操作、用户权限管理等关键技术。 数据库设计文件:为了方便用户更好地理解系统的后台逻辑,每个项目中都附带了完整的数据库设计文件。这些文件通常包括数据库结构图、数据表设计文档,以及示例数据SQL脚本。用户可以通过这些文件快速搭建项目所需的数据库环境,并了解各个数据表之间的关系和作用。 详细的开发文档:每个资源包都附有详细的开发文档,文档内容包括项目背景介绍、功能模块说明、系统流程图、用户界面设计以及关键代码解析等。这些文档为用户提供了深入的学习材料,使得即便是从零开始的开发者也能逐步掌握项目开发的全过程。 项目演示与使用指南:为帮助用户更好地理解和使用这些ASP项目,每个资源包中都包含项目的演示文件和使用指南。演示文件通常以视频或图文形式展示项目的主要功能和操作流程,使用指南则详细说明了如何配置开发环境、部署项目以及常见问题的解决方法。 毕业设计参考:对于正在准备毕业设计的学生来说,这些资源包是绝佳的参考材料。每个项目不仅功能完善、结构清晰,还符合常见的毕业设计要和标准。通过这些项目,学生可以学习到如何从零开始构建一个完整的Web系统,并积累丰富的项目经验。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值