概率论:一维随机变量及其分布

随机变量

Ω \Omega Ω为随机实验 E E E的样本空间,若 ∀ ω ∈ Ω , ∃ \forall \omega\in\Omega,\exist ωΩ,唯一 X ( ω ) ∈ R X(\omega)\in R X(ω)R Ω \Omega Ω对应,则称 X = X ( ω ) X=X(\omega) X=X(ω)为随机变量

离散型随机变量及分布律

1.离散型随机变量
Ω \Omega Ω为随机实验 E E E的样本空间, X X X Ω \Omega Ω上的随机变量,若 X X X的可能取值为有限个或者可列个,称 X X X为离散型随机变量

连续型随机变量及密度函数

Ω \Omega Ω为随机实验 E E E的样本空间, X X X Ω \Omega Ω上的随机变量, F ( x ) = p { X ≤ x } F(x)=p\{X\le x\} F(x)=p{Xx},若 ∃ f ( x ) ≥ 0 \exists f(x)\ge0 f(x)0使 ∫ − ∞ x f ( t ) d t = F ( x ) \int_{-\infty}^{x}f(t)dt=F(x) xf(t)dt=F(x)则称 X X X为连续型随机变量, f ( x ) f(x) f(x)称为 X X X的随机密度

常见的离散型随机变量

1. n n n贝努利实验 E E E为随机变量,若:
(1)每次实验只有两个实验结果 A , A ˉ A,\bar A A,Aˉ
(2)每次实验 A A A A ˉ \bar A Aˉ发生的可能性不变
(3)实验 n n n
称符合上述条件的实验为贝努利实验
P ( A k ) = C n k p k ( 1 − p ) n − k P(A_k)=C_{n}^k p^k(1-p)^{n-k} P(Ak)=Cnkpk(1p)nk
2.泊松分布
X X X为离散型随机变量, X X X的可能取值为 1 , 2 , 3... , n , . . . 1,2,3...,n,... 1,2,3...,n,...其分布律为 P { X = k } = λ k k ! e − λ ( λ > 0 , k = 0 , 1 , 2... ) P\{X=k\}=\frac {\lambda^k}{k!}e^{-\lambda} (\lambda>0,k=0,1,2...) P{X=k}=k!λkeλ(λ>0,k=0,1,2...) X X X服从泊松分布,记为 X ∼ Π ( λ ) X \sim \Pi(\lambda) XΠ(λ)
3.几何分布
每次实验可能的结果为 A , A ˉ A,\bar A A,Aˉ X X X表示首次出现实验 A A A的次数
P { X = k } = p ( 1 − p ) k − 1 P\{X=k\}=p(1-p)^{k-1} P{X=k}=p(1p)k1
X X X服从几何分布,记为 X ∼ G ( p ) X\sim G(p) XG(p)

常见连续型随机变量

1.均匀分布
X X X为连续型随机变量,若其密度函数为

f ( x ) = { 1 b − a , a < x < b 0 , 其 他 ( a , b ∈ R 且 a < b ) f(x)=\left\{ \begin{array}{l} \frac 1 {b-a} ,a<x<b \\ 0,其他 \end{array} \right.(a,b\in R且a<b) f(x)={ba1,a<x<b0,(a,bRa<b)

X X X服从 ( a , b ) (a,b) (a,b)均匀分布,记 X ∼ U ( a , b ) X\sim U(a,b) XU(a,b)
X ∼ U ( a , b ) X\sim U(a,b) XU(a,b)

F ( x ) = ∫ − ∞ x f ( t ) d t F(x)=\int_{-\infty}^{x}f(t)dt F(x)=xf(t)dt

f ( x ) = { 0 , x < a x − a b − a , a ≤ x < b 1 , x ≥ b f(x)=\left\{ \begin{array}{l} 0,x < a \\ \frac {x-a} {b-a} ,a\le x<b \\ 1,x\ge b \end{array} \right. f(x)=0,x<abaxa,ax<b1,xb
2.指数分布
X X X为连续型随机变量,若 X X X的密度函数为
f ( x ) = { λ e − λ x , x > 0 0 , x ≤ 0 ( λ > 0 ) f(x)=\left\{ \begin{array}{l} \lambda e^{-\lambda x},x>0 \\0,x\le 0 \end{array} \right.(\lambda>0) f(x)={λeλx,x>00,x0(λ>0)
X X X服从参数为 λ \lambda λ的指数分布,记 X ∼ E ( λ ) X\sim E(\lambda) XE(λ)
X ∼ E ( λ ) ( λ > 0 ) X\sim E(\lambda) (\lambda>0) XE(λ)(λ>0)

F ( x ) = ∫ − ∞ x f ( x ) d x F(x)=\int_{-\infty}^{x}f(x)dx F(x)=xf(x)dx

f ( x ) = { 0 , x < 0 1 − e − λ x , x ≥ 0 f(x)=\left\{ \begin{array}{l} 0,x<0 \\1-e^{-\lambda x},x\ge 0 \end{array} \right. f(x)={0,x<01eλx,x0
3.正态分布
X X X为随机变量,若 X X X的密度函数为
f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 ( μ 为 常 数 , σ 为 正 常 数 ) f(x)=\frac 1 {\sqrt{2\pi} \sigma}e^{-\frac {({x-\mu})^2} {2\sigma^2}}(\mu 为常数,\sigma为正常数) f(x)=2π σ1e2σ2(xμ)2(μσ)
X X X服从参数为 μ , σ 2 \mu,\sigma^2 μ,σ2的正态分布,记 X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) XN(μ,σ2)
结论:
(1) X ∼ N ( μ , σ 2 ) , 则 F ( x ) = Φ ( x − μ σ ) X\sim N(\mu,\sigma^2),则F(x)=\Phi(\frac {x-\mu}{\sigma}) XN(μ,σ2)F(x)=Φ(σxμ)
(2) X ∼ N ( μ , σ 2 ) , 则 P { a < x ≤ b } = F ( b ) − F ( a ) = Φ ( b − μ σ ) − Φ ( a − μ σ ) X\sim N(\mu,\sigma^2),则P\{a<x\le b\}=F(b)-F(a)=\Phi(\frac {b-\mu}{\sigma})-\Phi(\frac {a-\mu}{\sigma}) XN(μ,σ2)P{a<xb}=F(b)F(a)=Φ(σbμ)Φ(σaμ)
(3) X ∼ N ( μ , σ 2 ) , 则 x − μ σ ∼ N ( 0 , 1 ) X\sim N(\mu,\sigma^2),则\frac {x-\mu}{\sigma}\sim N(0,1) XN(μ,σ2)σxμN(0,1)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值