注意力机制学习笔记一(SENET)

一.Squeeze-and-Excitation Network(SE-NET)

思路:让神经网络使用全局信息来增强有用的信息,同时抑制无用的信息

假设:F_{trans}X\rightarrow U

其中,X\in R^{H',W',C'}U\in R^{H,W,C}U=\left [ u_{1},u_{2},...,u_{c} \right ]

V=\left [ v_{1},v_{2},..., v_{c}\right ],每一个v_{c}为一个filter kernel

于是 ,u_{c}=v_{c}*X,其中 * 代表卷积运算,此处忽略了bias。

即长为H‘,宽为W’,通道数为C‘的X进入一个block,输出一个长为H,宽为W,通道数为C的U。

Squeeze阶段:

z\in R^{C}                     z_{c}=F_{sq}(u_{c})=\frac{1}{H\times W}\sum_{i=1}^{H}\sum_{j=1}^{W}u_{c}(i,j)

 即对输入的u做global avg. pooling,输出z,这个阶段相当于从U中提取一些全局的信息

Excitation阶段:

s=F_{ex}(z,W)=\sigma_{sigmoid}(W_{2}\sigma _{ReLU}(W_{1}z))  ,其中W_{1}\in R^{\frac{C}{r},C}W_{2}\in R^{C,\frac{C}{r}}

\widetilde{X_{c}}=s_{c}u_{c}

即将上一步输出的z通过两个fully connected layer,第一个layer用ReLU激活,第二个layer用sigmoid 激活,得到s,最后将s和u相乘得到所需的输出。因为s的值域是0-1,所以s和u相乘后,没有用的信息就趋近于0,保留有用的信息

与其他架构的整合:

这个block是可以与其他的架构进行整合的,如下图所示,左边是一个ResNet Module,右边是添加了SE block的ResNet Module。

核心代码:

#来自知乎pprp
from torch import nn


class SELayer(nn.Module):
    def __init__(self, channel, reduction=16):
        super(SELayer, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.fc = nn.Sequential(
            nn.Linear(channel, channel // reduction, bias=False),
            nn.ReLU(inplace=True),
            nn.Linear(channel // reduction, channel, bias=False),
            nn.Sigmoid()
        )

    def forward(self, x):
        b, c, _, _ = x.size()
        y = self.avg_pool(x).view(b, c)
        y = self.fc(y).view(b, c, 1, 1)
        return x * y.expand_as(x)

附一个引路链接Face Paper:SeNet论文详解https://blog.csdn.net/wfei101/article/details/79672944icon-default.png?t=L9C2https://blog.csdn.net/wfei101/article/details/79672944

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值