背景
- SARS(Severe Acute Respiratory Syndrome,严重急性呼吸道综合症, 俗称:非典型肺炎)是21世纪第一个在世界范围内传播的传染病。SARS的爆发和蔓延给我国的经济发展和人民生活带来了很大影响,我们从中得到了许多重要的经验和教训,认识到定量地研究传染病的传播规律、为预测和控制传染病蔓延创造条件的重要性。请你们对SARS 的传播建立数学模型;
SARS是由SARS病毒引起的。
SARS事件是指于2002年在中国广东首发,并扩散至东南亚乃至全球的严重急性呼吸综合征(SARS)所引发的一系列事件。
问题一
- 对附件1所提供的一个早期的模型,评价其合理性和实用性。
问题二
- 建立你们自己的模型,说明为什么优于附件1中的模型;特别要说明怎样才能建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,这样做的困难在哪里?对于卫生部门所采取的措施做出评论,如:提前或延后5天采取严格的隔离措施,对疫情传播所造成的影响做出估计。附件2提供的数据供参考。
模型建立
明显问题一、二是一起的,解决问题二就是对问题一的完善、修正;
一般情况,种群的繁衍在没有限制的条件下是呈现 指数爆炸式增长;
而在考虑自然条件的限制(环境阻力)下,种群的繁衍是呈现 logistic增长;
SARS是一种传染病,前人总结经验得出传染病的基本模型(确定性模型)以及参考知网上的一些关于SARS传播研究的论文得知;
传染病模型大致分为两种:一种是确定性模型,通过建立传染病传播的常微分方程组进行研究;另外一种是随机模型,在确定性模型的基础上增加随机考虑,或者利用Markov(马尔卡夫)链进行 Monte Carlo(蒙特卡洛)模拟;
(参考文献:SARS传染扩散的动力学随机模型;基于SIR模型的SARS传染病研究);
(有一说一,这个随机模型感觉更牛,但是挺难的,就考虑做确定性模型了)
模型方向出来了具体就是选择合适的模型了;根据SARS传播的过程可以发现;
第一阶段:SARS的防控不足,关注度低,导致了传染病的爆发;传播可用logistic模型,仅仅考虑SARS的传播与感染不考虑对SARS的有效治疗及防控;
根据初值,终值条件直接带入即可求解;
第二阶段:SARS爆发,关注度大增,政府采取有效防控措施及治疗,人为干预SARS的传播;可以使用确定性模型,考虑SARS的传播、感染、治愈及防控;
根据确定性模型的分类,大致选择出了两个模型,一个是考虑了潜伏期的SEIR模型,另一个是没有考虑潜伏期的SIR模型;当然使用SEIR模型会更好,但是题目给出的数据中很难得知潜伏期这个数据;于是考虑使用SIR模型;
根据已知数据,得出有效数据(S、I、R),利用最小二乘法拟合,即可确定参数;
logistic模型:
关键:自然(固有)增长率 γ
SIR模型:
关键:感染率β,移出率γ(死亡+永久治愈)
模型的建立结束,值得一提的是;
-
SARS的自然增长率(传染率、感染率):
这个与病毒的传染能力,人口密度,人口流动,民众身体素质和健康状况、卫生习惯等因素有关,肯定的卫生习惯越好,身体素质越好,人口密度低,人口流动小,那么自然增长率就小;不同的人,不同的区域,特征不大一致,随机性强; -
SARS的移出率(传染抑制率):
这个是人为可控的,与感染者的诊断治疗及时程度、隔离程度、疾病流行区的清洁消毒以及疫苗的使用、卫生条件等有关;移出率越高那么表示防控措施的效果越好能在更短的时间控制住疫情;不同的人,不同的区域,特征不大一致,随机性强; -
随机性:
确定性模型利用均值代替总体的特征去除了随机性(不均匀性),将问题得到了简化,能刻画出总体的传播趋势;但是去除了随机性必定带来SARS传播的随机性导致的误差,明显的就有:超级传播现象(SSEs),一个感染者的感染力十分强,能感染很多人,这可能会导致局部区域SARS的爆发;并且忽略了不同区域的区域特性不一样,模型未考虑区域特性这一因素(农村、城市);
(参考:SARS流行病传染动力学研究)
那么对于问题一的分析:
模型:指数增长模型;特点:增长率动态调整,个体增长的有效时限;
模型评价:
1.符合一般物种的增长规律,通过增长率动态调整(给出的意义),个体增长的有效时限(给出的意义),参数的模拟现实意义明显,利于对实际问题的分析;
2.考虑增长率动态调整,为两个阶段,符合实际,其中香港拟合的效果很好;
3.个体增长的有效时限,从总体上进行统计归纳,有一定的合理性;
4.模型的解释能力有限,;
5.阶段划分的医学意义不明显;
6.从总体考虑,未考虑不同人随机性因素的影响;
7.未考虑不同区域区域性特征的随机性因素的影响;
8.求解是半模拟过程,操作繁琐,易出错;
模型较为合理,满足一般的实用性,能对SARS传播进行一定的分析与评价;
模型求解
XXX
问题三
- 收集SARS对经济某个方面影响的数据,建立相应的数学模型并进行预测。附件3提供的数据供参考。
模型建立
1.数据预处理
利用附件3的数据;已知附件3为北京市接待海外旅游游客人数的数据,如下:
年份 | 1月 | 2月 | … | 12月 |
---|---|---|---|---|
1997 | xxx | xxx | … | xxx |
1998 | xxx | xxx | … | xxx |
… | … | … | … | … |
2002 | xxx | xxx | … | xxx |
2003 | xxx | xxx | … | xxx |
其中2003年则为SARS影响北京市的一年;
首先对数据进行简单的统计分析,得出大概的结论;
画出折线图如下:
得出以下几点结论:
结论1.游客总人数基本呈现逐年增加的趋势;
结论2.每月游客人数基本呈现逐年增加的趋势;
结论3. 游客人数按年呈现周期性变化;且有1997-1999:4、5月,8、9、10月。两个游客高潮期;2000-2002年:2月,4、5月,8、9、10月。三个游客高潮期;统计这6年,总体:2月,4、5月,8、9、10月。三个游客高潮期;(总体的分布呈现三个高潮期,2000-2002年相比1997-1999年游客累增,拉高了总体水平)
对2003年受SARS影响下游客人数的分析(结合北京疫情情况),影响游客的数量,主要是地区的开放程度及游客的旅游意愿:
- 1月基本未受到疫情的影响,游客人数符合前述结论2;
- 2月受到了影响,但影响较小,这与早期SARS在广东爆发的时间相符,人们外出旅游的意愿下降;
- 3月中下旬受到了影响,开始防控,明显北京市开始的防控措施效果不行;
- 4月受到了影响,4月20左右爆发增长,防控加强;
- 5、6、7、8受到严重影响,但随着疫情的逐步好转,游客人数逐步增长;
- 9、10、11、12无数据;
2.建模思路
- 1-12月,受到SARS影响的月份,根据
往年数据预测
未受影响的数据; - 9-12月的真实数据,可根据
5-8月数据预测
,并判断出是否还受SARS影响(根据结论2),受SARS影响的月份即用5-8月数据预测的数据,未受影响的月份则用往年数据预测的数据; - 最终比较受到SARS影响和未受SARS影响;得出基本结论;
- 还可以利用
每年游客的数据预测
来判断根据往年数据预测的合理性;
3.模型选择
- 时间序列预测模型
时间序列预测模型有很多种,选取哪种呢?