【老刘的任务之PyTorch学习笔记】

import torchvision
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset_transform = torchvision.transforms.Compose([
    torchvision.transforms.ToTensor()
])

# 准备数据集

train_set = torchvision.datasets.CIFAR10(root='E:\\pythonProject\\resources\\cifar', transform=dataset_transform,
                                         train=True, download=True)
test_set = torchvision.datasets.CIFAR10(root='E:\\pythonProject\\resources\\cifar', transform=dataset_transform,
                                        train=False, download=True)
# 导入数据集,准备模型
test_loader = DataLoader(dataset=test_set, batch_size=64, shuffle=True, num_workers=0, drop_last=False)

# 初始化模型,参量
writer = SummaryWriter(log_dir="data_loader")
step = 0

# 取出数据集中数据
for epoch in range(2):
    for data in test_loader:
        imgs, targets = data
        writer.add_images(tag="dataloader{}".format(epoch), img_tensor=imgs, global_step=step)
        step = step + 1

# 关闭模型
writer.close()

在运行开始后,在终端在输入如下调用tensorboard代码中的参数文件的存储路径设置为了当前文件目录下的dataloader中
在这里插入图片描述
点击其中超链接进入网页查看运行结果。
在这里插入图片描述
这里代码调试好,先睡觉了T T

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值