v8使用wandb方法进行训练的可视化(可用于论文)

①关闭魔法,虚拟环境下安装

pip install wandb

②注意我下面的v8的训练脚本train.py代码:



import sys
sys.path.append(r"D:\Pycharm-Projects\YOLOv8bishe\ultralytics")#直接强制扫描ultralytics,不会出现No module named 'ultralytics',一定要放在最上面

from ultralytics import YOLO
# import warnings
# warnings.filterwarnings('ignore')
# import os
# os.environ['KMP_DUPLICATE_LIB_OK']='True'


if __name__ == '__main__':


    model = YOLO(r'D:\Pycharm-Projects\YOLOv8bishe\ultralytics\cfg\models\v8\yolov8s.yaml')

    model.load(r'D:\Pycharm-Projects\YOLOv8bishe\yolov8s.pt') # 是否加载预训练权重,科研不建议大家加载否则很难提升精度

    model.train(
                data=r'D:\Pycharm-Projects\YOLOv8bishe\ultralytics\cfg\datasets\Fire.yaml',  #  将data后面替换你自己的数据集地址
                cache=True,#如果设置为True,在训练前将整个数据集加载到内存中,可以加速训练过程,但需要较多内存
                imgsz=640,#训练时输入图像的大小,这里设置为640x640像素。图像尺寸对模型性能和速度有重要影响
                epochs=300,#训练的总轮数,这里设置为100轮。一个epoch表示整个数据集被模型看过一次
                single_cls=False,  # 是否是单类别检测,如果设置为True,表示模型仅需要识别一种类别。
                batch=16,#批大小,每次迭代训练所用的样本数量。这里设置为1,通常较小的批大小会使训练过程更稳定,但可能会增加训练时间
                close_mosaic=10,#是一个特定于YOLOv8的参数,用于控制何时停止使用mosaic数据增强(一种图像数据增强方法)
                workers=0,#用于加载数据的工作线程数。设置为0表示数据加载将在主线程中进行。
                device='0',#指定训练使用的设备,'0'通常表示使用第一个GPU
                optimizer='auto',  # using SGD,选择优化器,这里使用SGD(随机梯度下降)
                amp=False,  # 自动混合精度训练,可以提高训练速度和效率,同时减少内存使用。如果训练中出现损失为NaN,可以关闭此功能
                project='runs_train',
                name='v8-fire',#训练实验的名称,输出文件将保存在project/name目录下。
            
                )

其中的project=‘runs_train’,不能使用runs/train,否则wandb会对非法字符报错

③开始运行脚本,如下图所示,便正常:
在这里插入图片描述
④在训练的同时,新建一个新的终端,虚拟环境下输入指令:

wandb login --relogin

回车执行,如下:
在这里插入图片描述
ctrl+左击,这个显示出来的链接:

https://wandb.ai/authorize

会出现这个页面:
在这里插入图片描述
请开启魔法,注册账户或者谷歌账户登陆

⑤注册好后页面会出现这个:
在这里插入图片描述
⑥将这个key复制一下,粘贴到:
在这里插入图片描述
这个quit后面(它不会显示出key),直接回车就可
⑦点击Profile进入就可在这里插入图片描述
⑧然后拖到最下面,你会发现Runs文件夹:
在这里插入图片描述
点击这个即可。
进去后便出现:
在这里插入图片描述

⑨点击:
在这里插入图片描述
会出现:
在这里插入图片描述
可以实时观察。

感谢您的提问!使用YOLOv5与wandb(Weight & Biases)结合可以方便地进行模型训练和性能跟踪。下面是使用wandb的步骤: 1. 首先,确保您已经安装了wandb库。可以使用以下命令进行安装: ```python pip install wandb ``` 2. 在您的YOLOv5项目中导入wandb库: ```python import wandb ``` 3. 初始化wandb,并登录到您的wandb账户(如果没有账户,请先注册一个): ```python wandb.login() ``` 此命令将打开一个网页,您需要按照提示进行登录。 4. 在代码中添加wandb.init()来初始化一个新的运行会话: ```python wandb.init(project='yolov5', entity='your_username') ``` 这里,'project'是您的项目的名称,'entity'是您的wandb用户名。 5. 设置wandb配置,包括模型参数、优化器、学习率等: ```python config = wandb.config config.learning_rate = 0.001 config.batch_size = 16 ... ``` 6. 在训练过程中,使用wandb.log()记录关键指标: ```python for epoch in range(num_epochs): # 训练过程中更新指标 wandb.log({'epoch': epoch, 'loss': loss.item()}) ``` 7. 在您的训练脚本中添加wandb.watch()以跟踪模型的梯度和参数: ```python model = YOLOv5() wandb.watch(model) ``` 8. 启动训练过程,并在训练过程中进行指标记录: ```python with wandb.init(project='yolov5', entity='your_username'): # 训练代码 ``` 9. 运行训练脚本后,可以在wandb网站上查看训练过程中记录的指标和图表。 这些是使用YOLOv5与wandb结合进行模型训练和性能跟踪的基本步骤。您可以根据具体的需求和项目进行调整和扩展。希望对您有帮助!如有更多问题,请随时提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小远披荆斩棘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值