①关闭魔法,虚拟环境下安装
pip install wandb
②注意我下面的v8的训练脚本train.py代码:
import sys
sys.path.append(r"D:\Pycharm-Projects\YOLOv8bishe\ultralytics")#直接强制扫描ultralytics,不会出现No module named 'ultralytics',一定要放在最上面
from ultralytics import YOLO
# import warnings
# warnings.filterwarnings('ignore')
# import os
# os.environ['KMP_DUPLICATE_LIB_OK']='True'
if __name__ == '__main__':
model = YOLO(r'D:\Pycharm-Projects\YOLOv8bishe\ultralytics\cfg\models\v8\yolov8s.yaml')
model.load(r'D:\Pycharm-Projects\YOLOv8bishe\yolov8s.pt') # 是否加载预训练权重,科研不建议大家加载否则很难提升精度
model.train(
data=r'D:\Pycharm-Projects\YOLOv8bishe\ultralytics\cfg\datasets\Fire.yaml', # 将data后面替换你自己的数据集地址
cache=True,#如果设置为True,在训练前将整个数据集加载到内存中,可以加速训练过程,但需要较多内存
imgsz=640,#训练时输入图像的大小,这里设置为640x640像素。图像尺寸对模型性能和速度有重要影响
epochs=300,#训练的总轮数,这里设置为100轮。一个epoch表示整个数据集被模型看过一次
single_cls=False, # 是否是单类别检测,如果设置为True,表示模型仅需要识别一种类别。
batch=16,#批大小,每次迭代训练所用的样本数量。这里设置为1,通常较小的批大小会使训练过程更稳定,但可能会增加训练时间
close_mosaic=10,#是一个特定于YOLOv8的参数,用于控制何时停止使用mosaic数据增强(一种图像数据增强方法)
workers=0,#用于加载数据的工作线程数。设置为0表示数据加载将在主线程中进行。
device='0',#指定训练使用的设备,'0'通常表示使用第一个GPU
optimizer='auto', # using SGD,选择优化器,这里使用SGD(随机梯度下降)
amp=False, # 自动混合精度训练,可以提高训练速度和效率,同时减少内存使用。如果训练中出现损失为NaN,可以关闭此功能
project='runs_train',
name='v8-fire',#训练实验的名称,输出文件将保存在project/name目录下。
)
其中的project=‘runs_train’,不能使用runs/train,否则wandb会对非法字符报错
③开始运行脚本,如下图所示,便正常:
④在训练的同时,新建一个新的终端,虚拟环境下输入指令:
wandb login --relogin
回车执行,如下:
ctrl+左击,这个显示出来的链接:
https://wandb.ai/authorize
会出现这个页面:
请开启魔法,注册账户或者谷歌账户登陆
⑤注册好后页面会出现这个:
⑥将这个key复制一下,粘贴到:
这个quit后面(它不会显示出key),直接回车就可
⑦点击Profile进入就可
⑧然后拖到最下面,你会发现Runs文件夹:
点击这个即可。
进去后便出现:
⑨点击:
会出现:
可以实时观察。