自我高数学习笔记——知识点

高数学习笔记

第三章 导数的应用

本章难点

1、罗尔及拉格朗日中值定理;
2、函数图形的凹凸判定;
3、洛必达法则求未定式;
4、不等式证明

本章内容

一、微分中值定理
(一)、罗尔中值定理

如果函数 y = f ( x ) y=f(x) y=f(x)满足:
1)在闭区间 [ a , b ] [a,b] [a,b]上连续;
2)在开区间 ( a , b ) (a,b) (a,b)内可导;
3)在区间端点处的函数值相等,即 f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b).
则在 ( a , b ) (a,b) (a,b)内至少存在一点 ξ ( a < ξ < b ) \xi(a<\xi<b) ξ(a<ξ<b),使得函数 f ( x ) f(x) f(x)在该点处的导数为零,即 f ′ ( ξ ) = 0 f'(\xi)=0 f(ξ)=0.

(二)、拉格朗日中值定理

如果函数 y = f ( x ) y=f(x) y=f(x)满足:
1)在闭区间 [ a , b ] [a,b] [a,b]上连续;
2)在开区间 ( a , b ) (a,b) (a,b)内可导;
那么在 ( a , b ) (a,b) (a,b)内至少存在一点 ξ ( a < ξ < b ) \xi(a<\xi<b) ξ(a<ξ<b),使得
1 e m s p a c e f ( b ) − f ( a ) = f ′ ( ξ ) ( b − a ) 1 em space \Large f(b)-f(a)=f'(\xi)(b-a) 1emspacef(b)f(a)=f(ξ)(ba).

二、函数的性质研究
(一)、函数的单调性

y = f ( x ) y=f(x) y=f(x) [ a , b ] [a,b] [a,b]上连续,在开区间 ( a , b ) (a,b) (a,b)内可导,则
1)如果在 ( a , b ) (a,b) (a,b) f ′ ( x ) > 0 f'(x)>0 f(x)>0,那么函数 y = f ( x ) y=f(x) y=f(x) [ a , b ] [a,b] [a,b]上单调增加;
2)如果在 ( a , b ) (a,b) (a,b) f ′ ( x ) < 0 f'(x)<0 f(x)<0,那么函数 y = f ( x ) y=f(x) y=f(x) [ a , b ] [a,b] [a,b]上单调减小;
确定函数 f ( x ) f(x) f(x)的单调区间方法:
1)求出函数 f ( x ) f(x) f(x)在考察范围内的全部驻点(使函数 f ′ ( x ) = 0 f'(x)=0 f(x)=0的点称为函数 f ( x ) f(x) f(x)的驻点)和不可导点(除指定范围外,考察范围一般指函数的定义域);
2)用这些驻点和不可导点将考察范围划分为若干个子区间。

(二)、函数的极值

设函数 f ( x ) f(x) f(x) x 0 x_0 x0的某邻域 N ( x 0 , δ ) N(x_0,\delta) N(x0,δ)内有定义, ∀ x ∈ N ( x 0 , δ ) \forall x\in N(x_0,\delta) xN(x0,δ),都有
1) f ( x ) < f ( x 0 ) f(x)<f(x_0) f(x)<f(x0)成立,则称 f ( x 0 ) f(x_0) f(x0)为函数 f ( x ) f(x) f(x)的极大值;
2) f ( x ) > f ( x 0 ) f(x)>f(x_0) f(x)>f(x0)成立,则称 f ( x 0 ) f(x_0) f(x0)为函数 f ( x ) f(x) f(x)的极小值;
函数的极大值与极小值统称为函数的极值,使函数取得极值的点称为极值点;

(三)、函数的最值

设函数 f ( x ) f(x) f(x)在区间 I I I上有定义, x 1 , x 2 ∈ I x_1,x_2\in I x1,x2I,
1)若 ∀ x ∈ I \forall x\in I xI,都有 f ( x ) ⩽ f ( x 1 ) f(x)\leqslant f(x_1) f(x)f(x1)成立,则称 f ( x 1 ) f(x_1) f(x1)为函数 f ( x ) f(x) f(x)的最大值, x 1 x_1 x1为函数的最大值点;
2)若 ∀ x ∈ I \forall x\in I xI,都有 f ( x ) ⩾ f ( x 2 ) f(x)\geqslant f(x_2) f(x)f(x2)成立,则称 f ( x 2 ) f(x_2) f(x2)为函数 f ( x ) f(x) f(x)的最小值, x 2 x_2 x2为函数的最小值点;
函数的最大值与最小值统称为函数的最值,使函数取得最值的点称为最值点;
注 : \Large 注: 最值与极值不同,极值是一个局部概念,最值却是一个整体概念,一个函数的极值可以有若干个,但一个函数的最大值、最小值如果存在的话,只是是唯一的。
确定函数 f ( x ) f(x) f(x)的最值的方法:
1)确定函数 f ( x ) f(x) f(x)的考察范围((除指定范围外,考察范围一般指函数的定义域);
2)求出 f ′ ( x ) f'(x) f(x),确定驻点和不可导点。
3)求出函数在驻点、不可导点及考察范围端点的函数值,再通过比较其相应的函数值来得到所求的最大值和最小值。

(四)、曲线的凹凸性

f ( x ) f(x) f(x)在区间 [ a , b ] [a,b] [a,b]上连续, ∀ x 1 , x 2 ∈ ( a , b ) \forall x_1,x_2\in (a,b) x1,x2(a,b)
如果恒有 f ( x 1 + x 2 2 ) < f ( x 1 ) + f ( x 2 ) 2 f(\frac{x_1+x_2}{2})<\frac{f(x_1)+f(x_2)}{2} f(2x1+x2)<2f(x1)+f(x2),那么称在上的图形是凹的;
如果恒有 f ( x 1 + x 2 2 ) > f ( x 1 ) + f ( x 2 ) 2 f(\frac{x_1+x_2}{2})>\frac{f(x_1)+f(x_2)}{2} f(2x1+x2)>2f(x1)+f(x2),那么称在上的图形是凹的。
定义:连续曲线上凹与凸的分界点称为曲线的拐点。
定理:设 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上连续,在 ( a , b ) (a,b) (a,b)内二阶可导,则
1)若在 ( a , b ) (a,b) (a,b)内, f ′ ′ ( x ) > 0 f''(x)>0 f(x)>0,则 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上的图形是凹的;
2)若在 ( a , b ) (a,b) (a,b)内, f ′ ′ ( x ) < 0 f''(x)<0 f(x)<0,则 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上的图形是凸的;
注:函数在点 x 0 x_0 x0处的二阶导数不存在,但在 x 0 x_0 x0左右两侧 f ′ ′ ( x ) f''(x) f(x)的符号相反,点 M ( x 0 , f ( x 0 ) ) M(x_0,f(x_0)) M(x0,f(x0))也是曲线的拐点。
求曲线 y = f ( x 0 y=f(x0 y=f(x0凹凸区间和拐点的一般步骤:
1)确定函数的定义域;
2)在定义域内求 f ′ ′ ( x ) = 0 f''(x)=0 f(x)=0的点和 f ′ ′ ( x ) f''(x) f(x)不存在的点;
3)用上述点划分定义域,并列表判断函数的凹凸性。

(五)、曲线的渐近线

1)直线 x = x 0 x=x_0 x=x0是曲线 y = f ( x ) y=f(x) y=f(x)的垂直渐近线的充要条件是:
lim ⁡ x → x 0 + f ( x ) = ∞ \lim \limits_{x\rarr x^+_0}f(x)=\infty xx0+limf(x)= lim ⁡ x → x 0 − f ( x ) = ∞ \lim \limits_{x\rarr x^-_0}f(x)=\infty xx0limf(x)=
2)直线 y = y 0 y=y_0 y=y0是曲线 y = f ( x ) y=f(x) y=f(x)的水平渐近线的充要条件是:
lim ⁡ x → + ∞ f ( x ) = y 0 \lim \limits_{x\rarr +\infty}f(x)=y_0 x+limf(x)=y0 lim ⁡ x → − ∞ f ( x ) = y 0 \lim \limits_{x\rarr -\infty}f(x)=y_0 xlimf(x)=y0

三、洛必达法则

设函数 f ( x ) , g ( x ) f(x),g(x) f(x),g(x)满足:
1) lim ⁡ x → x 0 f ( x ) = 0 , lim ⁡ x → x 0 g ( x ) = 0 \lim \limits_{x\rarr x_0}f(x)=0,\lim \limits_{x\rarr x_0}g(x)=0 xx0limf(x)=0,xx0limg(x)=0;
2) f ( x ) , g ( x ) f(x),g(x) f(x),g(x) x 0 x_0 x0 x 0 x_0 x0的某去心邻域 N ( x 0 , δ ) N(x_0,\delta) N(x0,δ)内可导,且 g ′ ( x ) ≠ 0 g'(x)\not=0 g(x)=0
3) lim ⁡ x → x 0 f ′ ( x ) g ′ ( x ) = A \lim \limits_{x\rarr x_0}\frac{f'(x)}{g'(x)}=A xx0limg(x)f(x)=A(A为有限数,也可为无穷大),则 lim ⁡ x → x 0 f ( x ) g ( x ) = lim ⁡ x → x 0 f ′ ( x ) g ′ ( x ) = A \lim\limits_{x\rarr x_0}\frac{f(x)}{g(x)}=\lim\limits_{x\rarr x_0}\frac{f'(x)}{g'(x)}=A xx0limg(x)f(x)=xx0limg(x)f(x)=A
注;1)将自变量的变化过程 x → x 0 x\rarr x_0 xx0,换成 x → x 0 + , x → x 0 , x → ∞ , x → + ∞ , x → − ∞ x\rarr x^+_0,x\rarr x_0,x\rarr \infty,x\rarr +\infty,x\rarr -\infty xx0+,xx0,x,x+,x时,定理仍然成立;
2)将第一个条件中的" lim ⁡ x → x 0 f ( x ) = 0 , lim ⁡ x → x 0 g ( x ) = ∞ \lim \limits_{x\rarr x_0}f(x)=0,\lim \limits_{x\rarr x_0}g(x)=\infty xx0limf(x)=0,xx0limg(x)=“换成” lim ⁡ x → x 0 f ( x ) = 0 , lim ⁡ x → x 0 g ( x ) = ∞ \lim \limits_{x\rarr x_0}f(x)=0,\lim \limits_{x\rarr x_0}g(x)=\infty xx0limf(x)=0,xx0limg(x)=",定理结论依然成立,即上述定理对“ 0 0 {0 \over 0} 00”型或“ ∞ ∞ {\infty \over \infty} ”型的极限均成立;
3)若执行一次洛必达法则后,问题尚未解决,而函数 f ′ ( x ) f'(x) f(x) g ′ ( x ) g'(x) g(x)仍满足洛必达法则条件,则了继续使用洛必达法则,即 lim ⁡ x → x 0 f ′ ( x ) g ′ ( x ) = lim ⁡ x → x 0 f ′ ′ ( x ) g ′ ′ ( x ) = A \lim\limits_{x\rarr x_0}\frac{f'(x)}{g'(x)}=\lim\limits_{x\rarr x_0}\frac{f''(x)}{g''(x)}=A xx0limg(x)f(x)=xx0limg(x)f(x)=A.

(一)、“ 0 0 {0 \over 0} 00”型或“ ∞ ∞ {\infty \over \infty} ”型未定式的极限

例题:求 lim ⁡ x → 0 x − sin ⁡ x ( 1 − cos ⁡ x ) ( e 2 x − 1 ) \Large\lim\limits_{x\rarr 0}\frac{x-\sin x}{(1-\cos x)(e^{2x}-1)} x0lim(1cosx)(e2x1)xsinx
解 原式 = lim ⁡ x → 0 x − sin ⁡ x 1 2 x 2 ∗ 2 x \Large=\lim\limits_{x\rarr 0}\frac{x-\sin x}{\frac{1}{2}x^2*2x} =x0lim21x22xxsinx
= lim ⁡ x → 0 x − sin ⁡ x x 3 \Large=\lim\limits_{x\rarr 0}\frac{x-\sin x}{x^3} =x0limx3xsinx
= lim ⁡ x → 0 1 − cos ⁡ x 3 x 2 \Large=\lim\limits_{x\rarr 0}\frac{1-\cos x}{3x^2} =x0lim3x21cosx
= lim ⁡ x → 0 sin ⁡ x 6 x \Large=\lim\limits_{x\rarr 0}\frac{\sin x}{6x} =x0lim6xsinx
= 1 6 \Large=\frac{1}{6} =61
解析:此题虽是“ 0 0 {0 \over 0} 00”型,但求导相当复杂,可以先用等价无穷小化简,然后再用洛必达法则进行处理。

(二)、其他类型未定式的极限

洛必达法则除了可以用来求“ 0 0 {0 \over 0} 00”型和“ ∞ ∞ {\infty \over \infty} ”型未定式的极限外,还可以来求“ 0 ⋅ ∞ " , " ∞ − ∞ " , " 0 0 " , " ∞ 0 " , " 1 ∞ " {0\cdot \infty}","{\infty-\infty}","0^0","\infty^0","1^\infty" 0","","00","0","1"型未定式的极限。求这些未定式极限的基本方法就是:通过适当的变形,把它们化为“ 0 0 {0 \over 0} 00”型或“ ∞ ∞ {\infty \over \infty} ”型后,再用洛必达法则来计算。
例题:求 lim ⁡ x → 0 + x ln ⁡ x \Large\lim\limits_{x\rarr 0^+}x\ln x x0+limxlnx
解 原式 = lim ⁡ x → 0 + ln ⁡ x 1 x \Large=\lim\limits_{x\rarr 0^+}{\ln x\over {1\over x}} =x0+limx1lnx
= lim ⁡ x → 0 + 1 x − 1 x 2 \Large=\lim\limits_{x\rarr 0^+}{{1\over x}\over -{1 \over x^2}} =x0+limx21x1
= lim ⁡ x → 0 + ( − x ) \Large=\lim\limits_{x\rarr 0^+}(-x) =x0+lim(x)
= 0 \Large=0 =0
解析:此题是“ 0 ⋅ ∞ {0\cdot \infty} 0”型,将它转化为“ ∞ ∞ {\infty \over \infty} ”型来计算即可。

未完待续。。。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值