自我高数学习笔记——知识点

本文详细介绍了常微分方程的知识,包括微分方程的基本概念,如阶、解的类型,以及一阶微分方程的解法,如可分离变量、齐次方程和贝努利方程。此外,还涵盖了二阶常系数线性微分方程的解法,包括齐次与非齐次的情况。
摘要由CSDN通过智能技术生成

高数学习笔记

第六章 常微分方程

本章难点

1、一阶线性微分方程、齐次方程、贝努利方程的解法;
2、线性微分方程解的性质及解的结构定理;
3、二阶常系数非齐次线性微分方程的解法;
4、可降阶的二阶微分方程的解法。

本章内容

一、微分方程的基本概念

1.常微分方程:含有未知函数的导数或微分的等式称为微分方程,如 y ′ ′ + y ′ + y = x y''+y'+y=x y+y+y=x
2.微分方程的阶:微分方程中所含未知函数导数的最高阶数,称为微分方程的阶,如 y ′ ′ + y ′ + y = x y''+y'+y=x y+y+y=x为二阶微分方程;
3.微分方程的解:若一个函数代入微分方程能使该方程成为恒等式,则这个函数称为该微分方程的解;
4.微分方程的通解:若方程的解中所含相互独立的任意常数的个数与微分方程的阶数相同,这样的解称为微分方程的通解,如 y = c 1 + c 2 x y=c_1+c_2x y=c1+c2x y ′ ′ = 0 y''=0 y=0的通解;
5.微分方程的特解:若微分方程的解不含任意常数,这个解称为微分方程的特解;
6.初始条件:为求特解所设定的条件

二、一阶微分方程
(一)可分离变量微分方程

定义: d y d x = f ( x ) ∗ g ( y ) \dfrac{dy}{dx}=f(x)*g(y) dxdy=f(x)g(y)称为可分离变量的微分方程
解法:分离变量 1 g ( y ) d y = f ( x ) d x \dfrac{1}{g(y)}dy=f(x)dx g(y)1dy=f(x)dx
两边积分 ∫ 1 g ( y ) d y = ∫ f ( x ) d x \int\dfrac{1}{g(y)}dy=\int f(x)dx g(y)1dy=f(x)dx
得隐式通解 G ( y ) = F ( x ) + C G(y)=F(x)+C G(y)=F(x)+C

(二)齐次方程

1.定义: d y d x = f ( y x ) \dfrac{dy}{dx}=f(\dfrac{y}{x}) dxdy=f(xy)称为齐次方程
2.解法:令 y x = u , y = x u , y ′ = u + x d u d x \dfrac{y}{x}=u,y=xu,y'=u+x\dfrac{du}{dx} xy=u,y=xu,y=u+xdxdu
代入原方程 x d u d x = f ( u ) − u x\dfrac{du}{dx}=f(u)-u xdxdu=f(u)u
∫ d u f ( u ) − u = ∫ 1 x d x \int \dfrac{du}{f(u)-u}=\int\dfrac{1}{x}dx f(u)udu=x1dx
3.形如 d y d x + P ( x ) y = Q ( x ) \dfrac{dy}{dx}+P(x)y=Q(x) dxdy+P(x)y=Q(x)的微分方程,称为一阶线性微分方程
Q ( x ) = 0 Q(x)=0 Q(x)=0,称为一阶线性齐次微分方程;
Q ( x ) ≠ 0 Q(x)\not =0 Q(x)=0,称为一阶线性非齐次微分方程;
齐次线性微分方程 d y d x + P ( x ) y = 0 \dfrac{dy}{dx}+P(x)y=0 dxdy+P(x)

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值