双重差分法(DID)的种类和区别-如何选取合适的DID

双重差分法(DID)是近年来的 “学术明星”,常用于各种经济政策的评估。只要有一个政策外生冲击使得我们的被解释变量y在两个维度发生变化,其实就可以考虑双重差分法(DID)。当然,这两个维度一般都是时间维度和地区维度,所以 DID 常见于面板数据。不过,双重差分法(DID)是一个大家族,除了标准 DID 模型之外,还存在多种扩展的(准)DID 模型,今天咱们就来总结和梳理一下 “DID 大家族” 的成员信息。

标准 DID

标准 DID 是 “DID 大家族” 的基础,也是最容易理解和学习的一种 DID 模型。双重差分顾名思义,就是要做两次差分,一次是时间维度上的,一次是地区(个体)维度上的,在回归中我们可以通过交互项实现时间和地区维度的两次差分。标准 DID 模型的形式如下所示:

Y i t = β 0 + β 1 t r e a t i + β 2 p e r i o d t + β 3 t r e a t i × p e r i o d t + ε i t Y_{it}=\beta_0+\beta_1treat_i+\beta_2period_t+\beta_3treat_i\times period_t+ \varepsilon_{it} Yit=β0+β1treati+β2periodt+β3treati×periodt+εit

其中, t r e a t i treat_i treati是政策分组变量,处理组取值为 1,控制组取值为 0; p e r i o d t period_t periodt 是政策时间变量,政策时点后取值为 1,政策时点之前取值为 0。交互项的系数 β 3 \beta_3 β3 反映的就是经过两次差分后得到的 “纯净” 的政策效应。

推荐阅读论文
David Card, Alan Krueger. Minimum Wages and Employment: A Case Study of the Fast Food Industry in New Jersey and Pennsylvania[J]. American Economic Review , 1994, 84(4):772-793.

面板 DID

DID 模型与面板数据固定效应模型有着千丝万缕的关系。通常情况下,我们都习惯将固定效应引入 DID 模型,因为固定效应能够更为精确地反映两个维度上的变异性,并且可以在一定程度上帮助我们缓解遗漏变量偏误问题,所以我们见到更多的会是下面这个模型:

Y i t = β 0 + β 1 t r e a t i × p e r i o d t + λ i + v t + ε i t Y_{it}=\beta_0+\beta_1treat_i\times period_t+\lambda_i+v_t+ \varepsilon_{it} \\ Yit=β0+β1treati×periodt+λi+vt+εit

其中, λ i \lambda_i λi为个体固定效应,更为精确地反映了个体特征,替代了原来粗糙的政策分组变量 t r e a t i treat_i treati v t v_t vt 为时间固定效应,更为精确地反映了时间特征,替代了原来粗糙的政策时间变量 p e r i o d t period_t periodt

推荐阅读论文
周茂, 陆毅, 杜艳, 姚星. 开发区设立与地区制造业升级 [J]. 中国工业经济, 2018(03):62-79.

多期 DID

更多情况下,不同个体的政策实施时点( p e r i o d t period_t periodt)是不同的,所以政策时间变量 p e r i o d t period_t periodt 会变成 p e r i o d i t period_{it} periodit(注意下标)。这时候,我们不需要生成政策分组变量和政策时间变量的交互项 t r e a t i × p e r i o d i t treat_i×period_{it} treati×periodit,而仅仅使用一个虚拟变量 p o l i c y i t policy_{it} policyit 予以替代就可以了,用以表示个体 i i i t t t期是否实施政策。所以对于多期 DID,我们见到更多的会是下面这个模型:

Y i t = β 0 + β 1 p o l i c y i t + λ i + v t + ε i t Y_{it}=\beta_0+\beta_1policy_{it}+\lambda_i+v_t+ \varepsilon_{it} \\ Yit=β0+β1policyit+λi+vt+εit

推荐阅读论文
Ruixue Jia . The Legacies of Forced Freedom: China’s Treaty Ports[J]. Review of Economics and Statistics, 2014, 96(4):596-608.

连续 DID

在标准 DID 模型中,政策分组变量 t r e a t treat treattreat 是二值虚拟变量,这种设定仅仅体现的是个体实行政策与未实行政策的区别,无法体现出程度的变化。有些情况下,不同个体受政策影响的程度是不同的,也就是说地区(个体)维度的变化并不是从 0 到 1 的变化,而是一种连续型的变化。根据这一思想,我们其实可以将地区(个体)维度的政策分组虚拟变量替换为一个连续型变量,用以反映程度的变化,从而也就衍生出了一种扩展的(准)DID 模型——连续型 DID。

推荐阅读论文
Nathan Nunn, Nancy Qian. The potato’s contribution to population and urbanization: evidence from a historical experiment[J]. The Quarterly Journal of Economics, 2011, 126(2):593-650.

混合截面 DID

混合截面数据与面板数据相比,其不同之处在于它的不同时点的观测个体是不同的,但是它也有时间和个体两个维度,所以只要进行巧妙的构思,依然可以构建 DID 模型进行政策评估。伍德里奇同志在《计量经济学导论》一书 13.2 节举了一个经典的例子 “垃圾焚化炉的区位对住房价格的影响”(Kiel and McClain,1995),来讲解混合截面 DID 的做法,大家有兴趣可以去看下。

推荐阅读论文
Kiel, K. A, and K. T. McClain. House Prices during Siting Decision Stages: The Case of an Incinerator from Rumor through Operation. [J]. Journal of Environmental Ecomomics and Management, 1995, 28:241-255.

队列 DID

队列 DID(Cohort DID)又被称作 “截面 DID”,是一种较为特殊的 DID 类型,常用于评估特殊历史事件对个体和家庭的长期影响(通常使用的都是横截面数据)。与标准 DID 相似,队列 DID 也有两个维度的变异,通常而言,一个维度是地区,另一个维度是出生(年龄)队列,如果感觉难以理解的话,其实只需把出生队列这个维度理解为时间就好了。

推荐阅读论文
Chen Yi , Ziying Fan, Xiaomin Gu, Li-An Zhou. Arrival of Young Talent: The Send-Down Movement and Rural Education in China[J]. American Economic Review, 2020, 110 (11): 3393-3430.

三重差分 DDD

三重差分顾名思义,就是要做三次差分。在双重差分模型(DID)中,当控制组和处理组的时间趋势不同时(不满足平行趋势假定),我们就无法得到 “纯净” 的政策效应。这个时候可以考虑三重差分法(DDD),找到另外一对不受政策影响的 “处理组” 和“控制组”,将第一对处理组和对照组的差异(政策带来的差异和其他方面的差异)减去第二对处理组和对照组的差异(其他方面的差异)。

推荐阅读论文
Xiqian Cai, Yi Lu, Mingqin Wu, Linhui Yu. Does environmental regulation drive away inbound foreign direct investment?Evidence from a quasi-natural experiment in China[J]. Journal of Development Economics, 2016, 123:73-85.

PSM-DID

双重差分倾向评分匹配(PSM-DID)是倾向得分匹配(PSM)与双重差分法(DID)的有机结合(DID 是主,PSM 是次)。DID 模型有一个重要的前提假设——平行趋势假设,如果不满足这一假设,我们就不能获得反事实结果的估计。这时候,我们可以使用匹配的方法使得控制组和处理组尽可能相似,然后再用 DID 方法去进行估计就可以了。不过,PSM 之后也并不意味这平行趋势假定就一定满足,所以平行趋势检验还是要做的。

推荐阅读论文
刘晔, 张训常, 蓝晓燕. 国有企业混合所有制改革对全要素生产率的影响——基于 PSM-DID 方法的实证研究 [J]. 财政研究, 2016(10):63-75.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值