Numpy基础-np.random.shuffle()、np.random.permutation()

 1、numpy.random.shuffle()

函数定义:random.shuffle(x)

用途:打乱序列的顺序注意:此函数仅沿多维数组的第一个轴对数组进行打乱。子数组的顺序改变了,但它们的内容保持不变。

参数:

x:n维数组或可变序列。即要打乱的数组、列表或可变序列。

返回值:

None:在数组的原地址进行打乱,不产生新的数组

示例:

>>> import numpy as np
#例1 打乱0-9的顺序数组
>>> arr = np.arange(10)
>>> np.random.shuffle(arr)
>>> arr
array([2, 9, 6, 5, 8, 1, 0, 7, 4, 3])

#例2 打乱一个二维3*3的数组
>>> arr = np.arange(9).reshape((3, 3))
>>> arr
array([[0, 1, 2],
       [3, 4, 5],
       [6, 7, 8]])
>>> np.random.shuffle(arr)
>>> arr
array([[6, 7, 8],
       [3, 4, 5],
       [0, 1, 2]])

2、numpy.random.permutation()

函数定义:random.permutation(x)

用途:随机排列序列,或返回排列范围。注:如果 x 是一个多维数组,它只是沿着它的 第一个索引随机排序。

参数:

x: 整数或类数组。如果x是整数,则相当于传入np.arange(x)。如果 x 是一个数组,则复制并随机排列元素。

返回值:

out:ndarray。随机排列后的新数组。

示例:

#例1,传入整数
>>> np.random.permutation(10)
array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6])

#例2,传入一维列表或数组
>>> np.random.permutation([1, 4, 9, 12, 15])
array([15,  1,  9,  4, 12])

#例3,传入多维数组
>>> arr = np.arange(9).reshape((3, 3))
>>> arr
array([[0, 1, 2],
       [3, 4, 5],
       [6, 7, 8]])
>>> np.random.permutation(arr)
array([[6, 7, 8],
       [0, 1, 2],
       [3, 4, 5]])

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

艽野尘梦better

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>