基于R9000P-RTX3060显卡搭建深度学习pytorch环境实践

本文介绍了如何使用Conda环境管理工具创建并激活PyTorch1.12.1环境,同时安装了TensorFlow、sklearn、Keras等AI库,以及处理CUDA支持和相关数据处理库的安装与卸载过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

conda create -n pytorch python=3.8
conda activate pytorch
conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.3 -c pytorch

验证:

python-->import torch
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值