系列文章目录
文章目录
版权声明
本文为作者的考研数学笔记,可能这是人生最后一次全面学习数学的机会,所以通过网络的形式留存一份易保存且易回顾的资料。不存在恶意抄袭,本文内容出自以下几个地方:
- 武钟祥老师考研教材
- 武钟祥老师考研视频课
- 科学出版社十二五规划教材高等数学
- 网络
- 个人理解
其中教材内容会以
引用
的形式出现。
微分方程的基本概念
- 微分方程:含有自变量、未知函数和未知函数的导数的方程称为微分方程。
- 齐次和非齐次:多项式的次数是指所有变量的指数和, 0 0 0的次数是任意的,所有项的次数相同称为齐次,否则称为非齐次。
- 线性和非线性:仅含一次未知函数及其导数的微分方程称为线性微分方程,反之称为非线性微分方程。
- 线性相关和线性无关:两个线性多项式之比为常数则线性相关,否则为线性无关。
- 微分方程的阶:微分方程中所出现的未知函数最高阶导数的阶数,称为微分方程的阶。
- 微分方程的解、特解和通解:满足某个微分方程的函数称为微分方程的解,对于一个微分方程而言,其解往往不止一个,而是有一组。其中不含任意常数的解称为微分方程的特解,其中常数个数和微分方程的阶数相同的解称为微分方程的通解,通解是这一组解的统一表示形式。
- 初始条件:确定特解的一组常数称为初始条件。
- 积分曲线:微分方程的一个解在平面上对应的一条曲线,称为该微分方程的积分曲线。
一阶微分方程
一阶微分方程的一般形式: d y d x = f ( x , y ) \frac{dy}{dx}=f(x,y) dxdy=f(x,y)
- 可分离变量的微分方程:能表示为 g ( y ) d y = f ( x ) d x g(y)dy=f(x)dx g(y)dy=f(x)dx的微分方程称为可分离变量的微分方程。求解的方法是两端积分 ∫ g ( y ) d y = ∫ f ( x ) d x \int g(y)dy=\int f(x)dx ∫g(y)dy=∫f(x)dx
- 齐次微分方程:能表示为 d y d x = φ ( y x ) \frac{dy}{dx}=\varphi(\frac{y}{x}) dxdy=φ(xy)的微分方程称为齐次微分方程。求解齐次微分方程的一般方法:令 u = y x u=\frac{y}{x} u=xy,则 d y d x = u + x u ′ \frac{dy}{dx}=u+xu' dxdy=u+xu′,从而将原方程化为 x u ′ = φ ( u ) − u xu'=\varphi(u)-u xu′=φ(u)−u,此方程为可分离变量的微分方程。
- 一阶线性微分方程:形如 d y d x + P ( x ) y = Q ( x ) \frac{dy}{dx}+P(x)y=Q(x) dxdy+P(x)y=Q(x)的方程称为一般线性方程。求解一阶线性方程直接利用通解公式: y = e − ∫ P ( x ) d x [ ∫ Q ( x ) e ∫ P ( x ) d x d x + C ] y=e^{-\int P(x)dx}[\int Q(x)e^{\int P(x)dx}dx+C] y=e−∫P(x)dx[∫Q(x)e∫P(x)dxdx+C]
高阶微分方程
高阶可降阶的微分方程
- y ( n ) = f ( x ) y^{(n)}=f(x) y(n)=f(x)型的微分方程,可两边同时积分直至将原方程降为一阶微分方程。
- y ′ ′ = f ( x , y ′ ) y''=f(x,y') y′′=f(x,y′)型的方程。令 y ′ = p , y ′ ′ = d p d x y'=p,y''=\frac{dp}{dx} y′=p,y′′=dxdp,将原方程化为一阶微分方程。
- y ′ ′ = f ( y , y ′ ) y''=f(y,y') y′′=f(y,y′)型的方程。令 y ′ = p , y ′ ′ = d p d x = d p d y × d y d x = p d p d y y'=p,y''=\frac{dp}{dx}=\frac{dp}{dy}\times \frac{dy}{dx}=p\frac{dp}{dy} y′=p,y′′=dxdp=dydp×dxdy=pdydp,将原方程化为一阶微分方程。
高阶线性微分方程
高阶线性微分方程解的结构
这里只讨论二阶线性微分方程,其结论可以推广到更高阶的方程,二阶线性微分方程的一般形式为 y ′ ′ + p ( x ) y ′ + q ( x ) y = f ( x ) y''+p(x)y'+q(x)y=f(x) y′′+p(x)y′+q(x)y=f(x)这里的 p ( x ) , q ( x ) , f ( x ) p(x),q(x),f(x) p(x),q(x),f(x)均为连续函数,当方程右端的 f ( x ) ≡ 0 f(x)≡0 f(x)≡0时,称为二阶线性齐次方程,否则就称为二阶线性非齐次方程。
- 齐次方程: y ′ ′ + p ( x ) y ′ + q ( x ) y = 0 ① \tag*{①}y''+p(x)y'+q(x)y=0 y′′+p(x)y′+q(x)y=0①
- 非齐次方程: y ′ ′ + p ( x ) y ′ + q ( x ) y = f ( x ) ② \tag*{②}y''+p(x)y'+q(x)y=f(x) y′′+p(x)y′+q(x)y=f(x)②
如果 y 1 ( x ) y_1(x) y1(x)和 y 2 ( x ) y_2(x) y2(x)是 ① ① ①的两个线性无关特解,那么 ① ① ①的通解为: y = C 1 y 1 ( x ) + C 2 y 2 ( x ) y=C_1y_1(x)+C_2y_2(x) y=C1y1(x)+C2y2(x)如果 y 1 ( x ) y_1(x) y1(x)和 y 2 ( x ) y_2(x) y2(x)是齐次方程 ① ① ①的两个线性无关特解, y ∗ y^* y∗是 ② ② ②的一个特解,那么 ② ② ②的通解为: y = C 1 y 1 ( x ) + C 2 y 2 ( x ) + y ∗ ( x ) y=C_1y_1(x)+C_2y_2(x)+y^*(x) y=C1y1(x)+C2y2(x)+y∗(x)如果 y 1 ∗ ( x ) y_1^*(x) y1∗(x)和 y 2 ∗ ( x ) y_2^*(x) y2∗(x)是 ② ② ②的两个特解,那么 y ( x ) = y 2 ∗ ( x ) − y 1 ∗ ( x ) y(x)=y_2^*(x)-y_1^*(x) y(x)=y2∗(x)−y1∗(x)是 ① ① ①的解。如果 y 1 ∗ ( x ) y_1^*(x) y1∗(x)和 y 2 ∗ ( x ) y_2^*(x) y2∗(x)分别是方程 y ′ ′ + p ( x ) y ′ + q ( x ) y = f 1 ( x ) y''+p(x)y'+q(x)y=f_1(x) y′′+p(x)y′+q(x)y=f1(x)和 y ′ ′ + p ( x ) y ′ + q ( x ) y = f 2 ( x ) y''+p(x)y'+q(x)y=f_2(x) y′′+p(x)y′+q(x)y=f2(x)的特解,则 y 1 ∗ ( x ) + y 2 ∗ ( x ) y_1^*(x)+y_2^*(x) y1∗(x)+y2∗(x)是方程 y ′ ′ + p ( x ) y ′ + q ( x ) y = f 1 ( x ) + f 2 ( x ) y''+p(x)y'+q(x)y=f_1(x)+f_2(x) y′′+p(x)y′+q(x)y=f1(x)+f2(x)的一个特解。
高阶常系数齐次线性微分方程
二阶带常系数线性齐次微分方程的一般形式为 y ′ ′ + p y ′ + q y = 0 ③ y''+py'+qy=0③ y′′+py′+qy=0③其特征方程为 λ 2 + p λ + q = 0 \lambda^2+p\lambda+q=0 λ2+pλ+q=0,设 λ 1 , λ 2 \lambda_1,\lambda_2 λ1,λ2为该方程的两个根:
- 若 λ 1 ≠ λ 2 \lambda_1≠\lambda_2 λ1=λ2为两个不相等的实特征根,则方程 ③ ③ ③的通解为 y = C 1 e λ 1 x + C 2 e λ 2 x y=C_1e^{\lambda_1x}+C_2e^{\lambda_2x} y=C1eλ1x+C2eλ2x
- 若 λ 1 = λ 2 \lambda_1=\lambda_2 λ1=λ2为二重实特征根,则方程 ③ ③ ③的通解为 y = ( C 1 + C 2 x ) e λ 1 x y=(C_1+C_2x)e^{\lambda_1x} y=(C1+C2x)eλ1x
- 若 λ 1 = a + i β , λ 2 = a − i β \lambda_1=a+i\beta,\lambda_2=a-i\beta λ1=a+iβ,λ2=a−iβ为一对共轭复根,则方程 ③ ③ ③的通解为 y = e a x ( C 1 c o s β x + C 2 s i n β x ) y=e^{ax}(C_1cos\beta x+C_2sin\beta x) y=eax(C1cosβx+C2sinβx)
高阶常系数非齐次线性微分方程
二阶常系数非齐次线性微分方程的一般形式为 y ′ ′ + p y ′ = q y = f ( x ) ④ y''+py'=qy=f(x)④ y′′+py′=qy=f(x)④
- 若 f ( x ) = P m ( x ) e λ x f(x)=P_m(x)e^{\lambda x} f(x)=Pm(x)eλx,其中 P m ( x ) P_m(x) Pm(x)为 x x x的 m m m次多项式,则方程 ④ ④ ④的特解可设为 y ∗ = x k Q m ( x ) e λ x y^*=x^kQ_m(x)e^{\lambda x} y∗=xkQm(x)eλx其中 Q m ( x ) Q_m(x) Qm(x)是与 P m ( x ) P_m(x) Pm(x)同次的多项式, k k k是 ③ ③ ③的特征方程含根 λ \lambda λ的重复次数(即若 λ \lambda λ不是 ③ ③ ③的特征根,则 k = 0 k=0 k=0,若 λ \lambda λ是 ③ ③ ③的 s s s重特征重根,则 k = s k=s k=s)。
- 若
f
(
x
)
=
e
α
x
[
P
l
(
1
)
(
x
)
c
o
s
β
x
+
P
n
(
2
)
(
x
)
s
i
n
β
x
]
f(x)=e^{\alpha x}[P_l^{(1)}(x)cos\beta x+P_n^{(2)}(x)sin\beta x]
f(x)=eαx[Pl(1)(x)cosβx+Pn(2)(x)sinβx],其中
P
l
(
1
)
,
P
n
(
2
)
P_l^{(1)},P_n^{(2)}
Pl(1),Pn(2)分别是
x
x
x的
l
l
l次和
n
n
n次多项式,则方程
④
④
④的特解可设为:
y
∗
=
x
k
e
a
x
[
R
m
(
1
)
(
x
)
c
o
s
β
x
+
R
m
(
2
)
(
x
)
s
i
n
β
x
]
y^*=x^ke^{ax}[R^{(1)}_m(x)cos\beta x+R^{(2)}_m(x)sin\beta x]
y∗=xkeax[Rm(1)(x)cosβx+Rm(2)(x)sinβx]其中
R
m
(
1
)
(
x
)
R^{(1)}_m(x)
Rm(1)(x)和
R
m
(
2
)
(
x
)
R^{(2)}_m(x)
Rm(2)(x)是两个
m
m
m次多项式,
m
=
m
a
x
(
l
,
n
)
m=max(l,n)
m=max(l,n)。
- 当 α + i β \alpha+i\beta α+iβ不是方程 ③ ③ ③的特征根时,取 k = 0 k=0 k=0。
- 当 α + i β \alpha+i\beta α+iβ是方程 ③ ③ ③的特征根时,取 k = 1 k=1 k=1。