高等数学——多元函数微分学

系列文章目录


版权声明

本文为作者的考研数学笔记,可能这是人生最后一次全面学习数学的机会,所以通过网络的形式留存一份易保存且易回顾的资料。不存在恶意抄袭,本文内容出自以下几个地方:

  • 武钟祥老师考研教材
  • 武钟祥老师考研视频课
  • 科学出版社十二五规划教材高等数学
  • 网络
  • 个人理解

其中教材内容会以

引用

的形式出现。

多元函数相关概念

多元(二元)函数的定义:设 D D D是平面上的一个点集,若对每个点 P ( x , y ) ∈ D P(x,y)∈D P(x,y)D,变量 z z z按照某一对应法则 f f f有一个确定的值与之对应,则称 z z z x , y x,y x,y的二元函数,记为 z = f ( x , y ) z=f(x,y) z=f(x,y)其中点集 D D D称为该函数的定义域, x , y x,y x,y称为自变量, z z z称为因变量,函数 f ( x , y ) f(x,y) f(x,y)的全体所构成的集合称为函数 f f f的值域,记为 f ( D ) f(D) f(D)。通常情况下,二元函数在几何上表示一张空间曲面。

重极限

定义:设函数 f ( x , y ) f(x,y) f(x,y)在区域 D D D上有定义,点 P 0 ( x 0 , y 0 ) ∈ D P_0(x_0,y_0)∈D P0(x0,y0)D或为 D D D的边界点,如果 ∀ ε > 0 \forall\varepsilon>0 ε>0 ∃ δ > 0 \exists\delta>0 δ>0,当 P ( x , y ) ∈ D P(x,y)∈D P(x,y)D,且 0 < ( x − x 0 ) 2 + ( y − y 0 ) 2 < δ 0<\sqrt{(x-x_0)^2+(y-y_0)^2}<\delta 0<(xx0)2+(yy0)2 <δ时,都有 ∣ f ( x ) − A ∣ < ε |f(x)-A|<\varepsilon f(x)A<ε成立,则称常数 A A A为函数 f ( x , y ) f(x,y) f(x,y) ( x , y ) → ( x 0 , y 0 ) (x,y)\to(x_0,y_0) (x,y)(x0,y0)时的极限,记为 lim ⁡ ( x , y ) → ( x 0 , y 0 ) f ( x , y ) = A 或 lim ⁡ x → x 0 y → y 0 f ( x , y ) = A 或 lim ⁡ P → P 0 f ( P ) = A \lim\limits_{(x,y)\to(x_0,y_0)}f(x,y)=A或\lim\limits_{x\to x_0 y\to y_0}f(x,y)=A或\lim\limits_{P\to P_0}f(P)=A (x,y)(x0,y0)limf(x,y)=Axx0yy0limf(x,y)=APP0limf(P)=A

注意:

  • 多元函数极限存在是指 P ( x , y ) P(x,y) P(x,y)以任何方式趋近于 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0)时, f ( x , y ) f(x,y) f(x,y)都无限接近于 A A A。因此,如果 P ( x , y ) P(x,y) P(x,y)以特定方式趋近于 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0)时, f ( x , y ) f(x,y) f(x,y)都无限接近于 A A A P ( x , y ) P(x,y) P(x,y)以任何方式趋近于 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0)时, f ( x , y ) f(x,y) f(x,y)都无限接近于不同的值,那么该函数的极限都不存在。

连续

定义:设函数 f ( x , y ) f(x,y) f(x,y)在区域 D D D上有定义,点 P 0 ( x 0 , y 0 ) ∈ D P_0(x_0,y_0)∈D P0(x0,y0)D,如果 lim ⁡ ( x , y ) → ( x 0 , y 0 ) f ( x , y ) = f ( x 0 , y 0 ) \lim\limits_{(x,y)\to(x_0,y_0)}f(x,y)=f(x_0,y_0) (x,y)(x0,y0)limf(x,y)=f(x0,y0)成立,则称函数 f ( x , y ) f(x,y) f(x,y)在点 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0)连续,如果 f ( x , y ) f(x,y) f(x,y)在区域 D D D上的每个点 ( x , y ) (x,y) (x,y)处都连续,则称函数 f ( x , y ) f(x,y) f(x,y)在区域 D D D上连续。
性质

  • 性质一:多元函数的和、差、积、商(分母不为零)仍为连续函数。
  • 性质二:多元连续函数的复合函数也是连续函数。
  • 性质三:多元初等函数在其定义区域内连续。
  • 性质四(最大最小值定理):有界闭区域 D D D上的连续函数在区域 D D D上必能取得最大值和最小值。
  • 性质五(介值定理):有界闭区域 D D D上的连续函数在区域 D D D上必能取得介于最大值和最小值之间的任何值。

偏导数

偏导数定义:设 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0)的某一邻域内有定义,如果 lim ⁡ Δ x → 0 f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) Δ x \lim\limits_{\Delta x\to0}\frac{f(x_0+\Delta x,y_0)-f(x_0,y_0)}{\Delta x} Δx0limΔxf(x0+Δx,y0)f(x0,y0)存在,则称这个极限值为函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0)处对 x x x的偏导数,记为 ∂ z ∂ x ∣ x = x 0 y = x 0 或 ∂ f ∂ x ∣ x = x 0 y = x 0 或 f x ′ ( x 0 , y 0 ) \frac{\partial z}{\partial x}|_{x=x_0 y=x_0}或\frac{\partial f}{\partial x}|_{x=x_0 y=x_0}或f'_x(x_0,y_0) xzx=x0y=x0xfx=x0y=x0fx(x0,y0)类似的,如果 lim ⁡ Δ y → 0 f ( x 0 , y 0 + Δ y ) − f ( x 0 , y 0 ) Δ y \lim\limits_{\Delta y\to0}\frac{f(x_0,y_0+\Delta y)-f(x_0,y_0)}{\Delta y} Δy0limΔyf(x0,y0+Δy)f(x0,y0)存在,则称这个极限值为函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0)处对 y y y的偏导数,记为 ∂ z ∂ y ∣ x = x 0 y = x 0 或 ∂ f ∂ y ∣ x = x 0 y = x 0 或 f y ′ ( x 0 , y 0 ) \frac{\partial z}{\partial y}|_{x=x_0 y=x_0}或\frac{\partial f}{\partial y}|_{x=x_0 y=x_0}或f'_y(x_0,y_0) yzx=x0y=x0yfx=x0y=x0fy(x0,y0)
高阶偏导数定义:如果 f ( x , y ) f(x,y) f(x,y)在区域 D D D内的偏导数 ∂ z ∂ x , ∂ z ∂ y \frac{\partial z}{\partial x},\frac{\partial z}{\partial y} xz,yz仍然存在偏导数,则称之为函数 f ( x , y ) f(x,y) f(x,y)的二阶偏导数,常记为 ∂ ∂ x ( ∂ z ∂ x ) = ∂ 2 z ∂ x 2 或 f x x ′ ′ , ∂ ∂ y ( ∂ z ∂ x ) = ∂ 2 z ∂ x ∂ y 或 f x y ′ ′ ∂ ∂ x ( ∂ z ∂ y ) = ∂ 2 z ∂ y ∂ x 或 f y x ′ ′ , ∂ ∂ y ( ∂ z ∂ y ) = ∂ 2 z ∂ y 2 或 f y y ′ ′ \frac{\partial}{\partial x}({\frac{\partial z}{\partial x})}=\frac{\partial^2z}{\partial x^2}或f''_{xx},\frac{\partial}{\partial y}{(\frac{\partial z}{\partial x})}=\frac{\partial^2z}{\partial x \partial y}或f''_{xy}\\\\\frac{\partial}{\partial x}{(\frac{\partial z}{\partial y})}=\frac{\partial^2z}{\partial y \partial x}或f''_{yx},\frac{\partial}{\partial y}{(\frac{\partial z}{\partial y})}=\frac{\partial^2z}{ \partial y^2}或f''_{yy} x(xz)=x22zfxx′′y(xz)=xy2zfxy′′x(yz)=yx2zfyx′′y(yz)=y22zfyy′′常称 ∂ 2 z ∂ x ∂ y , ∂ 2 z ∂ y ∂ x \frac{\partial^2z}{\partial x \partial y},\frac{\partial^2z}{\partial y \partial x} xy2z,yx2z为混合偏导数。

定理:如果函数 f ( x , y ) f(x,y) f(x,y)的两个二阶混合偏导数 ∂ 2 z ∂ x ∂ y , ∂ 2 z ∂ y ∂ x \frac{\partial^2z}{\partial x \partial y},\frac{\partial^2z}{\partial y \partial x} xy2z,yx2z在区域 D D D内连续,则在该区域内这两个混合偏导数一定相等。

全微分

定义:如果函数 z = f ( x , y ) z=f(x,y) z=f(x,y) ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处的全增量 Δ z = f ( x 0 + Δ x , y 0 + Δ y ) − f ( x 0 , y 0 ) \Delta z=f(x_0+\Delta x,y_0+\Delta y)-f(x_0,y_0) Δz=f(x0+Δx,y0+Δy)f(x0,y0)可表示为 δ z = A Δ x + B Δ y + o ( ρ ) \delta z=A\Delta x+B\Delta y+o(\rho) δz=AΔx+BΔy+o(ρ)其中 A , B A,B A,B Δ x , Δ y \Delta x,\Delta y Δx,Δy无关, ρ = ( Δ x ) 2 + ( Δ y ) 2 \rho=\sqrt{(\Delta x)^2+(\Delta y)^2} ρ=(Δx)2+(Δy)2 ,则称函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处可微,而 A Δ x + B Δ y A\Delta x+B\Delta y AΔx+BΔy称为函数 f ( x , y ) f(x,y) f(x,y)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处的全微分,记为 d z = A Δ x + B Δ y dz=A\Delta x+B\Delta y dz=AΔx+BΔy如果 f ( x , y ) f(x,y) f(x,y)在区域 D D D内的每一点 ( x , y ) (x,y) (x,y)都可微分,则称 f ( x , y ) f(x,y) f(x,y) D D D内可微。
定理(全微分存在的必要条件):如果函数 f ( x , y ) f(x,y) f(x,y) ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处可微,则该函数在点 ( x , y ) (x,y) (x,y)处的偏导数 ∂ z ∂ x , ∂ z ∂ y \frac{\partial z}{\partial x},\frac{\partial z}{\partial y} xz,yz必定存在,且 d z = ∂ z ∂ x d x + ∂ z ∂ y d y dz=\frac{\partial z}{\partial x}dx+\frac{\partial z}{\partial y}dy dz=xzdx+yzdy

定理(全微分存在的充分条件):如果函数 f ( x , y ) f(x,y) f(x,y)的偏导数 ∂ z ∂ x , ∂ z ∂ y \frac{\partial z}{\partial x},\frac{\partial z}{\partial y} xz,yz在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0) 处连续,则函数 f ( x , y ) f(x,y) f(x,y)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0) 处可微。

用定义判断函数 f ( x , y ) f(x,y) f(x,y) ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处的可微性分为以下两步:

  • f x ′ ( x 0 , y 0 ) f'_x(x_0,y_0) fx(x0,y0) f y ′ ( x 0 , y 0 ) f'_y(x_0,y_0) fy(x0,y0)是否存在
  • lim ⁡ Δ x → 0 Δ y → 0 [ f ( x 0 + Δ x , y 0 + Δ y ) − f ( x 0 , y 0 ) ] − [ f x ′ ( x 0 , y 0 ) Δ x + f y ′ ( x 0 , y 0 ) Δ y ] ( Δ x ) 2 + ( Δ y ) 2 \lim\limits_{\Delta x\to 0 \Delta y \to 0}\frac{[f(x_0+\Delta x,y_0+\Delta y)-f(x_0,y_0)]-[f'_x(x_0,y_0)\Delta x+f'_y(x_0,y_0)\Delta y]}{\sqrt{(\Delta x)^2+(\Delta y)^2}} Δxy0lim(Δx)2+(Δy)2 [f(x0+Δx,y0+Δy)f(x0,y0)][fx(x0,y0)Δx+fy(x0,y0)Δy]是否等于零

重极限的求解

求解重极限的方法如下:

  • 有理运算
  • 极限与无穷小的关系
  • 夹逼原理
    • 不确定正负取绝对值
    • ∣ ∣ a ∣ − ∣ b ∣ ∣ ≤ ∣ a + b ∣ ≤ ∣ a ∣ + ∣ b ∣ ||a|-|b||\leq|a+b|\leq|a|+|b| ∣∣ab∣∣a+ba+b
    • ∣ ∣ a ∣ − ∣ b ∣ ∣ ≤ ∣ a − b ∣ ≤ ∣ a ∣ + ∣ b ∣ ||a|-|b||\leq|a-b|\leq|a|+|b| ∣∣ab∣∣aba+b
    • 2 ∣ a b ∣ ≤ a 2 + b 2 2|ab|\leq a^2+b^2 2∣aba2+b2
    • 2 a b ≤ a 2 + b 2 2ab\leq a^2+b^2 2aba2+b2
  • 极坐标结论: lim ⁡ x → 0 y → 0 x a y b x 2 + y 2 \lim\limits_{x\to0y\to 0}\frac{x^ay^b}{x^2+y^2} x0y0limx2+y2xayb,若 a + b > 2 a+b>2 a+b>2则极限为 0 0 0

求解极限不存在的方法:

  • 沿不同路径得到的极限不同
  • 极坐标结论: lim ⁡ x → 0 y → 0 x a y b x 2 + y 2 \lim\limits_{x\to0y\to 0}\frac{x^ay^b}{x^2+y^2} x0y0limx2+y2xayb,若 a + b ≤ 2 a+b\leq2 a+b2则极限不存在。

多元函数的微分法

复合函数微分法

定义:设函数 u = u ( x , y ) , v = v ( x , y ) u=u(x,y),v=v(x,y) u=u(x,y),v=v(x,y)在点 ( x , y ) (x,y) (x,y)处有对 x x x及对 y y y的偏导数,函数 z = f ( u , v ) z=f(u,v) z=f(u,v)在对应点 ( u , v ) (u,v) (u,v)处有连续偏导数,则复合函数 z = f [ u ( x , y ) , v ( x , y ) ] z=f[u(x,y),v(x,y)] z=f[u(x,y),v(x,y)]在点(x,y)处的两个偏导数存在,且有 ∂ z ∂ x = ∂ z ∂ u ∂ u ∂ x + ∂ z ∂ v ∂ v ∂ x , ∂ z ∂ y = ∂ z ∂ u ∂ u ∂ y + ∂ z ∂ v ∂ v ∂ y \frac{\partial z}{\partial x}=\frac{\partial z}{\partial u}\frac{\partial u}{\partial x}+\frac{\partial z}{\partial v}\frac{\partial v}{\partial x},\frac{\partial z}{\partial y}=\frac{\partial z}{\partial u}\frac{\partial u}{\partial y}+\frac{\partial z}{\partial v}\frac{\partial v}{\partial y} xz=uzxu+vzxv,yz=uzyu+vzyv
全微分形式的不变性:设函数 z = f ( u , v ) , u = u ( x , y ) z=f(u,v),u=u(x,y) z=f(u,v),u=u(x,y),及 v = v ( x , y ) v=v(x,y) v=v(x,y)都有连续的一阶偏导数,则复合函数 z = f [ u ( x , y ) , v ( x , y ) ] z=f[u(x,y),v(x,y)] z=f[u(x,y),v(x,y)]的全微分 d z = ∂ z ∂ x d x + ∂ z ∂ y d y + ∂ z ∂ u d u + ∂ z ∂ v d v dz=\frac{\partial z}{\partial x}dx+\frac{\partial z}{\partial y}dy+\frac{\partial z}{\partial u}du+\frac{\partial z}{\partial v}dv dz=xzdx+yzdy+uzdu+vzdv即不论把函数 z z z看做自变量 x , y x,y x,y的函数,还是看作中间变量 u , v u,v u,v的函数,函数 z z z的全微分形式都是一样的。

隐函数微分法

由方程 F ( x , y ) = 0 F(x,y)=0 F(x,y)=0确定的隐函数 y = y ( x ) y=y(x) y=y(x):若函数 F ( x , y ) F(x,y) F(x,y)在点 P ( x 0 , y 0 ) P(x_0,y_0) P(x0,y0) 的某一邻域内有连续偏导数,且 F ( x 0 , y 0 ) = 0 , F y ′ ( x 0 , y 0 ) ≠ 0 F(x_0,y_0)=0,F'_y(x_0,y_0)≠0 F(x0,y0)=0,Fy(x0,y0)=0,则方程 F ( x , y ) = 0 F(x,y)=0 F(x,y)=0在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)的某邻域可唯一确定一个有连续导数的函数 y = f ( x ) y=f(x) y=f(x),并有 y ′ = − F x ′ F y ′ y'=-\frac{F'_x}{F'_y} y=FyFx
由方程 F ( x , y , z ) = 0 F(x,y,z)=0 F(x,y,z)=0确定的隐函数 z = z ( x , y ) z=z(x,y) z=z(x,y):若函数 F ( x , y , z ) F(x,y,z) F(x,y,z)在点 P ( x 0 , y 0 , z 0 ) P(x_0,y_0,z_0) P(x0,y0,z0)的某一邻域内有连续偏导数,且 F ( x 0 , y 0 , z 0 ) = 0 , F y ′ ( x 0 , y 0 , z 0 ) ≠ 0 F(x_0,y_0,z_0)=0,F'_y(x_0,y_0,z_0)≠0 F(x0,y0,z0)=0,Fy(x0,y0,z0)=0,则方程 F ( x , y , z ) = 0 F(x,y,z)=0 F(x,y,z)=0在点 ( x 0 , y 0 , z 0 ) (x_0,y_0,z_0) (x0,y0,z0)的某邻域可唯一确定一个有连续导数的函数 z = f ( x , y ) z=f(x,y) z=f(x,y),并有 ∂ z ∂ x = − F x ′ F z ′ , ∂ z ∂ y = − F y ′ F z ′ \frac{\partial z}{\partial x}=-\frac{F'_x}{F'_z},\frac{\partial z}{\partial y}=-\frac{F'_y}{F'_z} xz=FzFx,yz=FzFy

多元函数的极值与最值

无约束极值

定义:设函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0)的某邻域内有定义,若对该邻域内任意的点 P ( x , y ) P(x,y) P(x,y)均有 f ( x , y ) ≤ f ( x 0 , y 0 ) f(x,y)≤f(x_0,y_0) f(x,y)f(x0,y0),则称 ( x 0 , y 0 ) (x_0,y_0) (x0,y0) f ( x , y ) f(x,y) f(x,y)的极大值点,称 f ( x 0 , y 0 ) f(x_0,y_0) f(x0,y0) f ( x , y ) f(x,y) f(x,y)的极大值。极大值和极小值点统称为极值点,极大值极小值统称为极值。
定理(极值的必要条件):设函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0)存在偏导数,且 ( x 0 , y 0 ) (x_0,y_0) (x0,y0) f ( x , y ) f(x,y) f(x,y)的极值点,则 f x ′ ( x 0 , y 0 ) = 0 , f y ′ ( x 0 , y 0 ) = 0 f'_x(x_0,y_0)=0,f'_y(x_0,y_0)=0 fx(x0,y0)=0,fy(x0,y0)=0
定理(极值的充分条件):设函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0)的某邻域内有二阶连续偏导数,且 f x ′ ( x 0 , y 0 ) = 0 , f y ′ ( x 0 , y 0 ) = 0 f'_x(x_0,y_0)=0,f'_y(x_0,y_0)=0 fx(x0,y0)=0,fy(x0,y0)=0,记 A = f x x ′ ′ ( x 0 , y 0 ) , B = f x y ′ ′ ( x 0 , y 0 ) , C = f y y ′ ′ ( x 0 , y 0 ) A=f''_{xx}(x_0,y_0),B=f''_{xy}(x_0,y_0),C=f''_{yy}(x_0,y_0) A=fxx′′(x0,y0),B=fxy′′(x0,y0),C=fyy′′(x0,y0)则有以下结论:

  • A C − B 2 > 0 AC-B^2>0 ACB2>0,则 ( x 0 , y ) ) (x_0,y_)) (x0,y)) f ( x , y ) f(x,y) f(x,y)的极值点。
    • A < 0 A<0 A<0,则 ( x ) , y ) ) (x_),y_)) (x),y)) f ( x , y ) f(x,y) f(x,y)的极大值点;
    • A > 0 A>0 A>0,则 ( x ) , y ) ) (x_),y_)) (x),y)) f ( x , y ) f(x,y) f(x,y)的极小值点。
  • A C − B 2 < 0 AC-B^2<0 ACB2<0,则 ( x 0 , y ) ) (x_0,y_)) (x0,y))不为 f ( x , y ) f(x,y) f(x,y)的极值点。
  • A C − B 2 = 0 AC-B^2=0 ACB2=0,则 ( x 0 , y ) ) (x_0,y_)) (x0,y))可能为 f ( x , y ) f(x,y) f(x,y)的极值点,也可能不为 f ( x , y ) f(x,y) f(x,y)的极值点(此时一般用定义判断)。

求具有二阶连续偏导数的二元函数 z = f ( x , y ) z=f(x,y) z=f(x,y)极值的一般步骤为:

  • 求出 f ( x , y ) f(x,y) f(x,y)的驻点 P 1 . . . P k P_1...P_k P1...Pk
  • 利用极值的充分条件判定驻点 P i P_i Pi是否是极值点。

条件极值和拉格朗日乘数法

z = f ( x , y ) z=f(x,y) z=f(x,y)在条件 φ ( x , y ) = 0 \varphi(x,y)=0 φ(x,y)=0下的条件极值的一般方法为:

  • 构造拉格朗日函数 F ( x , y , λ ) = f ( x , y ) + λ φ ( x , y ) F(x,y,\lambda)=f(x,y)+\lambda \varphi(x,y) F(x,y,λ)=f(x,y)+λφ(x,y)
  • F ( x , y , λ ) F(x,y,\lambda) F(x,y,λ)分别对 x , y , λ x,y,\lambda x,y,λ求偏导数,构造方程组 { f x ′ ( x , y ) + λ φ x ′ ( x , y ) = 0 f y ′ ( x , y ) + λ φ y ′ ( x , y ) = 0 φ ( x , y ) = 0 \begin{cases}f'_x(x,y)+\lambda\varphi'_x(x,y)=0\\f'_y(x,y)+\lambda\varphi'_y(x,y)=0\\\varphi(x,y)=0\end{cases} fx(x,y)+λφx(x,y)=0fy(x,y)+λφy(x,y)=0φ(x,y)=0

解出 x , y , λ x,y,\lambda x,y,λ,则其中 ( x , y ) (x,y) (x,y)就是函数 f ( x , y ) f(x,y) f(x,y)在条件 φ ( x , y ) = 0 \varphi(x,y)=0 φ(x,y)=0下的可能极值点。

最大值最小值

求连续函数 f ( x , y ) f(x,y) f(x,y)在有界闭区域 D D D上的最大值:

  • 第一步:求 f ( x , y ) f(x,y) f(x,y)在点 D D D内部可能的极值点。
  • 第二步:求 f ( x , y ) f(x,y) f(x,y)在点 D D D的边界上的最大最小值。
  • 第三步:比较。

连续、可导、可微之间的关系

  • 连续不一定可导,可导不一定连续;
  • 连续不一定可微,可微一定连续;
  • 可导不一定可微,可微一定可导;
  • 一阶偏导数连续一定可微、可微一阶偏导数不一定连续;
  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

亻乍屯页女子白勺

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值