高等数学——函数、数列的性态及极限

前言

  • 函数是高等数学研究的对象
  • 极限是研究函数的工具

函数

x x x y y y是两个变量, D D D是一个给定的数集,如果对于每个数 x ∈ D x∈D xD,变量 x x x按照一定的法则总有一个确定的数值 y y y和它相对应,则称 y y y x x x函数,记为: y = f ( x ) , x ∈ D y=f(x),x∈D y=f(x),xD其中 x x x称为自变量 y y y称为因变量 D D D称为函数的定义域,记为: D f D_f Df函数值 y y y的全体构成的集合称为函数 f f f值域,记为: R f R_f Rf
当两个函数的定义域和对应规则完全相同时,它们就是同一个函数。

常见函数

复合函数

设函数 y = f ( u ) y=f(u) y=f(u)的定义域为 D f D_f Df,函数 u = g ( x ) u=g(x) u=g(x)的定义域为 D g D_g Dg,值域为 R g R_g Rg,若 D f ∩ R g ≠ ∅ D_f ∩R_g≠∅ DfRg=,则称 y = f [ g ( x ) ] y=f[g(x)] y=f[g(x)]为函数 y = f ( u ) y=f(u) y=f(u) u = g ( x ) u=g(x) u=g(x)复合函数。它的定义域为 { x ∣ x ∈ D g , g ( x ) ∈ D f } \colorbox{aqua}{$\{x|x∈D_g,g(x)∈D_f\}$} {xxDgg(x)Df}

反函数

设函数 y = f ( x ) y=f(x) y=f(x)的定义域为 D D D,值域为 R y R_y Ry,若对任意 y ∈ R y y∈R_y yRy,有唯一确定的 x ∈ D x∈D xD,使得 y = f ( x ) y=f(x) y=f(x),则记为 x = f − 1 ( y ) x=f^{-1}(y) x=f1(y)称其为 y = f ( x ) y=f(x) y=f(x)反函数

  • 单调函数一定有反函数,反之则不然。
  • 有时候也将反函数写成 y = f − 1 ( x ) y=f^{-1}(x) y=f1(x),在同一个坐标系中, y = f ( x ) y=f(x) y=f(x) x = f − 1 ( y ) x=f^{-1}(y) x=f1(y)的图形重合, y = f ( x y=f(x y=f(x)和 y = f − 1 ( x ) y=f^{-1}(x) y=f1(x)的图形关于 y = x y=x y=x对称。
  • f − 1 ( f ( x ) ) = x f^{-1}(f(x))=x f1(f(x))=x
    证明:设 f ( x ) = y f(x)=y f(x)=y,则 f − 1 ( y ) = x f^{-1}(y)=x f1(y)=x
  • f ( f − 1 ( x ) ) = x f(f^{-1}(x))=x f(f1(x))=x
    证明:设 f − 1 ( x ) = y f^{-1}(x)=y f1(x)=y,则 x = f ( y ) x=f(y) x=f(y)

初等函数

将幂、指数、对数、三角、反三角函数统称为基本初等函数。由常数和基本初等函数经过有限次的加、减、乘、除和复合所得到的且能用一个解析式表示的函数,称为初等函数

  • 幂函数
    在这里插入图片描述
  • 指数函数,对数函数

在这里插入图片描述

  • 三角函数

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

  • 反三角函数

在这里插入图片描述

在这里插入图片描述

函数的性质

单调性

y = f ( x ) y=f(x) y=f(x)在区间 I I I上有定义,若 ∀ x 1 , x 2 ∈ I , x 1 < x 2 ⇒ f ( x 1 ) < f ( x 2 ) \forall x_1,x_2 \in I,x_1<x_2\Rightarrow f(x_1)<f(x_2) x1,x2I,x1<x2f(x1)<f(x2),则称 y = f ( x ) y=f(x) y=f(x)在区间 I I I上单调递增; ∀ x 1 , x 2 ∈ I , x 1 < x 2 ⇒ f ( x 1 ) ≤ f ( x 2 ) \forall x_1,x_2 \in I,x_1<x_2\Rightarrow f(x_1)\leq f(x_2) x1,x2I,x1<x2f(x1)f(x2),则称 y = f ( x ) y=f(x) y=f(x)在区间 I I I上单调不减。

  • 复合函数单调性判断:同增异减
  • 反函数单调性判断:和原函数相同
  • 初等函数单调性判断:
    • + + + = = =
    • + + + = = =
    • − - = = =
    • − - = = =
  • f ( x ) f(x) f(x)在区间 I I I上可导,则:
    • f ′ ( x ) > 0 ⇒ f ( x ) f'(x)>0\Rightarrow f(x) f(x)>0f(x)单调增
    • f ′ ( x ) ≥ 0 ⇔ f ( x ) f'(x)≥0\Leftrightarrow f(x) f(x)0f(x)单调不减

奇偶性

y = f ( x ) y=f(x) y=f(x)的定义域 D D D关于原点对称, ∀ x ∈ D , ⇒ f ( − x ) = f ( x ) ∀x∈D,\Rightarrow f(-x)=f(x) xD,f(x)=f(x),则称 f ( x ) f(x) f(x) D D D上的偶函数; ∀ x ∈ D , ⇒ f ( − x ) = − f ( x ) ∀x∈D,\Rightarrow f(-x)=-f(x) xD,f(x)=f(x),则称 f ( x ) f(x) f(x) D D D上的奇函数。

  • 奇函数 f ( x ) f(x) f(x)的图形关于原点对称,若 f ( x ) f(x) f(x) x = 0 x=0 x=0有定义,则 f ( 0 ) = 0 f(0)=0 f(0)=0;偶函数的图形关于 y y y轴对称。
  • 复合函数奇偶性判断:内偶为偶,内奇同外。
  • 反函数奇偶性判断:与原函数一致。
  • 初等函数奇偶性判断:
    • + + + = = =
    • + + + = = =
    • × \times × = = =
    • × \times × = = =
    • × \times × = = =
  • f ( x ) f(x) f(x)可导,则:
    • f ( x ) f(x) f(x)是奇函数 ⇒ \Rightarrow f ′ ( x ) f'(x) f(x)是偶函数
    • f ( x ) f(x) f(x)是偶函数 ⇒ \Rightarrow f ′ ( x ) f'(x) f(x)是奇函数
  • 连续的奇函数其原函数都是偶函数;连续的偶函数其原函数中有且仅有一个是奇函数

周期性

若存在实数 T > 0 T>0 T>0,对于任意 x x x,恒有 f ( x + T ) = f ( x ) f(x+T)=f(x) f(x+T)=f(x),则称 y = f ( x ) y=f(x) y=f(x)为周期函数,使得上式成立的最小正数 T T T称为最小正周期,简称为函数 f ( x ) f(x) f(x)的周期。

  • f ( x ) f(x) f(x) T T T为周期,则 f ( a x + b ) f(ax+b) f(ax+b) T ∣ a ∣ ( a ≠ 0 ) \frac{T}{|a|}(a\neq 0) aT(a=0)为周期
  • 可导的周期函数其导函数为周期函数且周期相同
  • 周期函数的原函数是周期函数 ⇔ \Leftrightarrow 其在一个周期上的积分为零

有界性

∃ M > 0 , ∀ x ∈ X ⇒ ∣ f ( x ) ∣ ≤ M \exists M>0,\forall x∈X\Rightarrow |f(x)|≤M M>0,xXf(x)M,则称 f ( x ) f(x) f(x) X X X上有界。

  • f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上连续 ⇒ \Rightarrow f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上有界。
  • f ( x ) f(x) f(x) ( a , b ) (a,b) (a,b)上连续,且 f ( a + ) f(a^+) f(a+) f ( b − ) f(b^-) f(b)存在 ⇒ f ( x ) \Rightarrow f(x) f(x) ( a , b ) (a,b) (a,b)上有界(区间换为 ( − ∞ , a ) 、 ( a , + ∞ ) , ( − ∞ , + ∞ ) (-\infty,a)、(a,+\infty),(-\infty,+\infty) (,a)(a,+)(,+)也成立)。
  • f ′ ( x ) f'(x) f(x)有限区间 I I I上有界 ⇒ f ( x ) \Rightarrow f(x) f(x) I I I上有界。
    证明:任取 x ∈ ( a , b ) x\in(a,b) x(a,b),取定点 x 0 ∈ ( a , b ) x_0\in(a,b) x0(a,b),由拉格朗日中值定理,存在 ξ ∈ ( a , b ) \xi\in(a,b) ξ(a,b)使得 f ( x ) = f ( x 0 ) + f ′ ( ξ ) ( x − x 0 ) f(x)=f(x_0)+f'(\xi)(x-x_0) f(x)=f(x0)+f(ξ)(xx0) ∣ f ( x ) ∣ = ∣ f ( x 0 ) + f ′ ( ξ ) ( x − x 0 ) ∣ ≤ ∣ f ( x 0 ) ∣ + ∣ f ′ ( ξ ) ∣ ∣ x − x 0 ∣ |f(x)|=|f(x_0)+f'(\xi)(x-x_0)|\leq|f(x_0)|+|f'(\xi)||x-x_0| f(x)=f(x0)+f(ξ)(xx0)f(x0)+f(ξ)∣∣xx0 f ′ ( ξ ) f'(\xi) f(ξ)有界及 ∣ x − x 0 ∣ < ∣ b − a ∣ |x-x_0|<|b-a| xx0<ba,可知存在 M ≥ 0 M\geq0 M0,使得 ∣ f ( x ) ∣ ≤ M |f(x)|\leq M f(x)M

连续性

设函数 f ( x ) f(x) f(x) x 0 x_0 x0的某邻域内有定义,若 lim ⁡ x → x 0 f ( x ) = f ( x 0 ) \lim\limits_{x\to x_0}f(x)=f(x_0) xx0limf(x)=f(x0),则称 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0连续;若 lim ⁡ x → x 0 − f ( x ) = f ( x 0 ) \lim\limits_{x\to x_0^-}f(x)=f(x_0) xx0limf(x)=f(x0),则称 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0左连续;若 lim ⁡ x → x 0 + f ( x ) = f ( x 0 ) \lim\limits_{x\to x_0^+}f(x)=f(x_0) xx0+limf(x)=f(x0),则称 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0右连续;若 f ( x ) f(x) f(x)在区间 ( a , b ) (a,b) (ab)内每点都连续,则称 f ( x ) f(x) f(x)在区间 ( a , b ) (a,b) (a,b)内连续,如果 f ( x ) f(x) f(x) x = a x=a x=a处右连续,在 x = b x=b x=b处左连续,则称 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上连续。

  • f ( x ) f(x) f(x)连续 ⇔ f ( x ) \Leftrightarrow f(x) f(x)左连续且右连续。
  • 基本初等函数在其定义域内是连续的。
  • 初等函数在其定义区间(定义区间是包含在定义域内的区间)内是连续的。
  • 连续函数的和、差、积、商(分母不为零)、复合仍为连续函数。
  • 有界性:
    • f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]内连续,则 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上有界。
    • f ( x ) f(x) f(x) ( a , b ) (a,b) (a,b)上连续,且 f ( a + ) f(a^+) f(a+) f ( b − ) f(b^-) f(b)存在 ⇒ f ( x ) \Rightarrow f(x) f(x) ( a , b ) (a,b) (a,b)上有界(区间换为 ( − ∞ , a ) 、 ( a , + ∞ ) , ( − ∞ , + ∞ ) (-\infty,a)、(a,+\infty),(-\infty,+\infty) (,a)(a,+)(,+)也成立)。
  • 最值定理:若 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]内连续,则 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上一定有最大值和最小值。
  • 介值定理:若 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]内连续,且 f ( a ) ≠ f ( b ) f(a)≠f(b) f(a)=f(b),则对 f ( a ) f(a) f(a) f ( b ) f(b) f(b)之间任意一点 C C C,至少存在一个 ξ ∈ ( a , b ) \xi∈(a,b) ξ(a,b),使得 f ( ξ ) = C f(\xi)=C f(ξ)=C
  • 零点定理:若 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上连续,且 f ( a ) × f ( b ) < 0 f(a)\times f(b)<0 f(a)×f(b)<0,则 ∃ ξ ∈ ( a , b ) \exists\xi∈(a,b) ξ(a,b),使得 f ( ξ ) = 0 f(\xi)=0 f(ξ)=0
  • 连续函数和不连续函数的和差积商:
    • 连续 ± \pm ±不连续 = = =不连续
    • 连续不为零 × \times ×不连续 = = =不连续
    • 连续为零 × \times ×不连续 = = =不一定
    • 不连续 × \times ×不连续 = = =不一定

间断点

  • 若函数 f ( x ) f(x) f(x) x 0 x_0 x0的某去心邻域内有定义,但在 x 0 x_0 x0处不连续,则称点 x 0 x_0 x0 f ( x ) f(x) f(x)间断点
  • 左右极限都存在的间断点称为第一类间断点
    • 左右极限都存在且相等的间断点称为可去间断点
    • 左右极限都存在但不相等的间断点称为跳跃间断点
  • 左右极限至少有一个不存在的间断点称为第二类间断点
    • lim ⁡ x → x 0 − = ∞ \lim\limits_{x\to x^-_0}=\infty xx0lim= lim ⁡ x → x 0 + = ∞ \lim\limits_{x\to x^+_0}=\infty xx0+lim=,则称 x 0 x_0 x0 f ( x ) f(x) f(x)无穷间断点
    • f ( x ) f(x) f(x)左右极限都不存在并且在 x 0 x_0 x0的某去心邻域内无穷多次振荡,则称 x 0 x_0 x0为函数 f ( x ) f(x) f(x)震荡间断点
  • 不连续的点就是间断点,这句话是错误的,前提是保证在某点的去心邻域内有定义

数列

如果按照某一法则,对每一个 n ∈ N + n\in N_+ nN+,对应着一个确定的实数 x n x_n xn,这些实数 x n x_n xn按照下标 n n n从小到大排列得到的一个序列:
x 1 , x 2 , … , x n , … x_1,x_2,\dots,x_n,\dots x1,x2,,xn,
就叫做数列,记为 { x n } \{x_n\} {xn}。数列中的每一个数叫做数列的项,第 n n n x n x_n xn叫做数列的通项。在几何上,数列 { x n } \{x_n\} {xn}可看作数轴上的一个动点,它依次取数轴上的点 x 1 , x 2 , … , x n , … x_1,x_2,\dots,x_n,\dots x1,x2,,xn,,即数列 { x n } \{x_n\} {xn}可看作自变量为正整数 n n n的函数:
x n = f ( n ) , n ∈ N + x_n=f(n),n\in N_+ xn=f(n),nN+

极限

数列极限

{ x n } \{x_n\} {xn}为一数列,如果存在常数 a a a,对于任意给定的正数 ϵ \epsilon ϵ,总存在正整数 N N N,使得当 n > N n>N n>N时,不等式
∣ x n − a ∣ < ϵ |x_n-a|<\epsilon xna<ϵ
恒成立,那么就称 a a a为数列 { x n } \{x_n\} {xn}的极限,或称数列 { x n } \{x_n\} {xn}收敛 a a a,记为
lim ⁡ n → ∞ x n = a \lim_{n\to\infty}x_n=a nlimxn=a
如果不存在这样的数,则称数列 { x n } \{x_n\} {xn}没有极限,或称数列 { x n } \{x_n\} {xn}发散的。

  • 数列 x n {x_n} xn的极限是否存在,如果存在极限值是多少与数列的前有限项无关。
  • 如果数列 { x n } \{x_n\} {xn}收敛,那么它的极限唯一
  • 有界性:如果数列 { x n } \{x_n\} {xn}收敛,那么它一定有界
  • 保号性:设 lim ⁡ n → ∞ x n = a \lim\limits_{n\to\infty}x_n=a nlimxn=a
    • a > 0 ⇒ ∃ N a>0\Rightarrow \exists N a>0N,当 n > N n>N n>N时,都有 x n > 0 x_n>0 xn>0
    • ∃ x n ≥ 0 ⇒ a ≥ 0 \exists x_n\geq0\Rightarrow a\geq0 xn0a0
  • 如果数列 { x n } \{x_n\} {xn}收敛于 a a a,则它的任一子数列也收敛于 a a a

函数极限

函数的极限分为以下两种情况:

  • 自变量趋近于无穷时函数的极限 ∀ ε > 0 , ∃ X > 0 \forall \varepsilon >0,\exists X>0 ε>0,X>0

    • x > X ⇒ ∣ f ( x ) − A ∣ < ɛ x>X \Rightarrow|f(x)-A|<ɛ x>Xf(x)A<ɛ,则称常数 A A A为函数 f ( x ) f(x) f(x) x → + ∞ x\rightarrow +\infty x+时的极限,记为: lim ⁡ x → + ∞ f ( x ) = A \lim\limits_{x\to+\infty}f(x) = A x+limf(x)=A
    • x < − X ⇒ ∣ f ( x ) − A ∣ < ɛ x<-X\Rightarrow|f(x)-A|<ɛ x<Xf(x)A<ɛ,则称常数 A A A为函数 f ( x ) f(x) f(x) x → − ∞ x\rightarrow -\infty x时的极限,记为: lim ⁡ x → − ∞ f ( x ) = A \lim\limits_{x\to-\infty}f(x) = A xlimf(x)=A
    • ∣ x ∣ > X ⇒ ∣ f ( x ) − A ∣ < ɛ |x|>X\Rightarrow|f(x)-A|<ɛ x>Xf(x)A<ɛ,则常数A为函数 f ( x ) f(x) f(x) x → ∞ x\rightarrow \infty x的极限,记为: lim ⁡ x → ∞ f ( x ) = A \lim\limits_{x\to\infty}f(x) = A xlimf(x)=A
    • lim ⁡ x → − ∞ f ( x ) = lim ⁡ x → + ∞ f ( x ) = A ⇔ lim ⁡ x → ∞ f ( x ) = A \lim\limits_{x\to-\infty}f(x) = \lim\limits_{x\to+\infty}f(x) = A\Leftrightarrow \lim\limits_{x\to\infty}f(x) = A xlimf(x)=x+limf(x)=Axlimf(x)=A
  • 自变量趋于有限值时函数的极限定义 ∀ ε > 0 , ∃ δ > 0 , ∀ x ∈ D \forall\varepsilon >0,\exists\delta>0,\forall x\in D ε>0,δ>0,xD

    • x 0 − δ < x < x 0 ⇒ ∣ f ( x ) − A ∣ < ɛ x_0-\delta<x<x_0\Rightarrow|f(x)-A|<ɛ x0δ<x<x0f(x)A<ɛ,则称常数 A A A为函数 f ( x ) f(x) f(x) x → x 0 x\rightarrow x_0 xx0时的左极限,记为: lim ⁡ x → x 0 − f ( x ) = A \lim\limits_{x\to{x_0^-}}f(x) = A xx0limf(x)=A
    • x 0 < x < x 0 + δ ⇒ ∣ f ( x ) − A ∣ < ɛ x_0<x<x_0+\delta \Rightarrow|f(x)-A|<ɛ x0<x<x0+δf(x)A<ɛ,则常数 A A A为函数 f ( x ) f(x) f(x) x → x 0 x\rightarrow x_0 xx0时的右极限,记为: lim ⁡ x → x 0 + f ( x ) = A \lim\limits_{x\to{x_0^+}}f(x) = A xx0+limf(x)=A
    • 0 < ∣ x − x 0 ∣ < δ ⇒ ∣ f ( x ) − A ∣ < ɛ 0<|x-x_0|<\delta\Rightarrow |f(x)-A|<ɛ 0<xx0<δf(x)A<ɛ,则常数 A A A为函数 f ( x ) f(x) f(x) x → x 0 x\rightarrow x_0 xx0时的极限,记为: lim ⁡ x → x 0 f ( x ) = A \lim\limits_{x\to{x_0}}f(x) = A xx0limf(x)=A
    • lim ⁡ x → x 0 f ( x ) = A ⇔ lim ⁡ x → x 0 − f ( x ) = A = lim ⁡ x → x 0 + f ( x ) = A \lim\limits_{x\to x_0}f(x) = A\Leftrightarrow\lim\limits_{x\to{x_0^-}}f(x) = A=\lim\limits_{x\to{x_0^+}}f(x) = A xx0limf(x)=Axx0limf(x)=A=xx0+limf(x)=A
  • 其中 ɛ ɛ ɛ用于刻画函数值和常数 A A A的接近程度, δ \delta δ用于刻画 x → x 0 x\rightarrow x_0 xx0的过程。

  • 极限 lim ⁡ n → x 0 f ( x ) = A \lim\limits_{n\to{x_0}}f(x) = A nx0limf(x)=A是否存在以及存在极限值等于多少与函数 f ( x ) f(x) f(x) x = x 0 x=x_0 x=x0处有没有定义,有定义值是多少无关。

  • 如果函数极限存在,那么极限唯一

  • 局部有界性:若 lim ⁡ x → x 0 f ( x ) \lim\limits_{x\to x_0}f(x) xx0limf(x)存在,则 f ( x ) f(x) f(x) x 0 x_0 x0去心邻域有界。

  • 保号性:设 lim ⁡ x → x 0 = A \lim\limits_{x\to x_0}=A xx0lim=A

    • A>0 ⇒ ∃ δ > 0 \colorbox{aqua}{A>0}\Rightarrow \exists\delta>0 A>0δ>0,当 x ∈ U ˚ ( x 0 , δ ) x∈\mathring{U}(x_0,\delta) xU˚(x0,δ)时, f(x)>0 \colorbox{aqua}{f(x)>0} f(x)>0
    • ∃ δ > 0 , x ∈ U ˚ ( x 0 , δ ) \exists \delta>0,x∈\mathring{U}(x_0,\delta) δ>0,xU˚(x0,δ) f(x)≥0 \colorbox{aqua}{f(x)≥0} f(x)≥0,那么 A≥0 \colorbox{aqua}{A≥0} A≥0

极限存在准则

  • 夹逼准则:若 ∃ N \exists N N,当 n > N n>N n>N时, x n < y n < z n x_n<y_n<z_n xn<yn<zn,且 lim ⁡ n → ∞ x n = lim ⁡ n → ∞ z n = a \lim\limits_{n\to\infty}x_n=\lim\limits_{n\to\infty}z_n=a nlimxn=nlimzn=a,则 lim ⁡ n → ∞ y n = a \lim\limits_{n\to\infty}y_n=a nlimyn=a
  • 单调有界准则:单调有界数列必有极限,单调增、有上界的数列必有极限;单调减、有下界的数列必有极限。

无穷小

若函数 f ( x ) f(x) f(x) x → x 0 / ∞ x\to x_0/\infty xx0/∞时的极限为零,则称函数 f ( x ) f(x) f(x) x → x 0 / ∞ x\to x_0/\infty xx0/∞时的无穷小

无穷小的比较

无穷小比较的基础是在同一个自变量变化过程下,比较的内容是无穷小趋于零的快慢。设 a ( x ) a(x) a(x) b ( x ) b(x) b(x)是同一自变量变化过程下的无穷小,且 a ( x ) ≠ 0 a(x)\neq0 a(x)=0,则:

  • 如果 lim ⁡ a ( x ) b ( x ) = 0 \lim\frac{a(x)}{b(x)}=0 limb(x)a(x)=0,就说 a ( x ) a(x) a(x)是比 b ( x ) b(x) b(x)高阶的无穷小,记为 a ( x ) = o ( b ( x ) ) a(x)=o(b(x)) a(x)=o(b(x))
  • 如果 lim ⁡ a ( x ) b ( x ) = ∞ \lim\frac{a(x)}{b(x)}=\infty limb(x)a(x)=,就说 a ( x ) a(x) a(x)是比 b ( x ) b(x) b(x)低阶的无穷小;
  • 如果 lim ⁡ a ( x ) b ( x ) = C ≠ 0 \lim\frac{a(x)}{b(x)}=C\neq0 limb(x)a(x)=C=0,就说 a ( x ) a(x) a(x) b ( x ) b(x) b(x)是同阶无穷小;
  • 如果 lim ⁡ a ( x ) b ( x ) = 1 \lim\frac{a(x)}{b(x)}=1 limb(x)a(x)=1,就说 a ( x ) a(x) a(x) b ( x ) b(x) b(x)是等价无穷小,记为 a ( x ) ∼ b ( x ) a(x)\thicksim b(x) a(x)b(x)
  • 如果 lim ⁡ a ( x ) [ b ( x ) ] k = C ≠ 0 ,则称 a ( x ) 是 b ( x ) 的 k 阶无穷小 \lim\frac{a(x)}{[b(x)]^k}=C≠0,则称a(x)是b(x)的k阶无穷小 lim[b(x)]ka(x)=C=0,则称a(x)b(x)k阶无穷小

无穷小和极限的关系

lim ⁡ f ( x ) = A ⇔ f ( x ) = A + α ( x ) \lim f(x)=A\Leftrightarrow f(x)=A+\alpha(x) limf(x)=Af(x)=A+α(x),其中 lim ⁡ α ( x ) = 0 \lim\alpha(x)=0 limα(x)=0

  • 即函数值等于极限值加无穷小。
  • 它的重要性在于它将函数极限的运算问题转换为常数和无穷小的代数运算问题。

无穷大

若当 x → x 0 / ∞ x\to x_0/\infty xx0/∞ ∣ f ( x ) ∣ |f(x)| f(x)无限增大,则称函数 f ( x ) f(x) f(x) x → x 0 / ∞ x\to x_0/\infty xx0/∞时的无穷大

  • 无穷大和极限:当 f ( x ) f(x) f(x) x → x 0 / ∞ x\to x_0/\infty xx0/∞时的无穷大时,极限 lim ⁡ x → x 0 f ( x ) \lim\limits_{x\to x_0}f(x) xx0limf(x)是不存在的,即无穷大是函数极限不存在的一种特殊情况,但为了方便描述这一情况,我们常说“函数的极限是无穷大”,并记为: lim ⁡ x → x 0 f ( x ) = ∞ \lim\limits_{x\to x_0}f(x)=\infty xx0limf(x)=
  • 无穷大和无界:谈无穷大时必须和自变量的变化过程联系起来,谈无界时必须和自变量的取值范围联系起来。当 f ( x ) f(x) f(x) x → x 0 / ∞ x\to x_0/\infty xx0/∞时的无穷大时,那么函数在 x 0 x_0 x0的某一去心邻域内一定无界,反之则不一定成立。

无穷大的比较

  • x → + ∞ x\to +\infty x+时, l n α x < < x β < < a x ln^{\alpha}x<<x^{\beta}<<a^x lnαx<<xβ<<ax,其中 α > 0 , β > 0 , a > 1 \alpha>0,\beta>0,a>1 α>0,β>0,a>1
  • n → ∞ n\to\infty n时, l n α n < < n β < < a n < < n ! < < n n ln^{\alpha}n<<n^{\beta}<<a^n<<n!<<n^n lnαn<<nβ<<an<<n!<<nn,其中 α > 0 , β > 0 , a > 1 \alpha>0,\beta>0,a>1 α>0,β>0,a>1

无穷大和无穷小的关系

在同一极限过程中,如果 f ( x ) f(x) f(x)是无穷大,则 1 f ( x ) \frac{1}{f(x)} f(x)1是无穷小;如果 f ( x ) f(x) f(x)是无穷小,且 f ( x ) ≠ 0 f(x)≠0 f(x)=0,则 1 f ( x ) \frac{1}{f(x)} f(x)1是无穷大。

求极限

首先应该明确:

  • 在函数极限中 x x x趋近于某个不带正负号的值指从正负两个方向趋近
  • 在数列极限中 n n n趋近于某个值指从正方向趋近

函数的极限

分左右极限

在求极限时有以下几种情况需要分左右极限进行求解:

  • 分段函数和带有绝对值的函数在分界点处的极限(在该分界点两侧函数表达式不同)
  • 指数函数 ∞ ^\infty
  • a r c t a n ∞ arctan\infty arctan
  • 添加根号或开根号化简时注意 x x x的趋向

注意,这里的 ∞ \infty 是既包含 + ∞ +\infty +又包含 − ∞ -\infty ,如果只有其中一种那就不用分左右进行求解,例如:
lim ⁡ x → 0 + a r c t a n 1 x 2 = π 2 lim ⁡ x → 0 + e 1 x 2 = + ∞ \lim\limits_{x\to0+}arctan\frac{1}{x^2}=\frac{\pi}{2}\\ \lim\limits_{x\to0+}e^{\frac{1}{x^2}}=+\infty x0+limarctanx21=2πx0+limex21=+

利用函数的连续性求极限

在求极限的过程中,如果可以判断函数的连续性,那么函数在该点的极限就是函数在该点的函数值。

利用基本极限求极限

  • lim ⁡ x → 0 s i n x x = 1 \lim\limits_{x\to 0}\frac{sinx}{x}=1 x0limxsinx=1
  • lim ⁡ x → 0 ( 1 + x ) 1 x = e \lim\limits_{x\to0}(1+x)^{\frac{1}{x}}=e x0lim(1+x)x1=e
  • lim ⁡ x → + ∞ ( 1 + x ) 1 x = 1 \lim\limits_{x\to+\infty}(1+x)^{\frac{1}{x}}=1 x+lim(1+x)x1=1
  • lim ⁡ x → ∞ ( 1 + 1 x ) x = e \lim\limits_{x\to\infty}(1+\frac{1}{x})^x=e xlim(1+x1)x=e
  • lim ⁡ x → 0 + ( 1 + 1 x ) x = 1 \lim\limits_{x\to0^+}(1+\frac{1}{x})^x=1 x0+lim(1+x1)x=1
  • lim ⁡ x → 0 a x − 1 x = l n a \lim\limits_{x\to0}\frac{a^x-1}{x}=lna x0limxax1=lna
  • lim ⁡ n → ∞ n n = 1 \lim\limits_{n\to\infty}\sqrt[n]{n}=1 nlimnn =1
  • lim ⁡ x → ∞ a n = 1 ( a > 0 ) \lim\limits_{x\to\infty}\sqrt[n]a=1(a>0) xlimna =1(a>0)
  • lim ⁡ n → ∞ x n = { 0 , ∣ x ∣ < 1 ∞ , ∣ x ∣ > 1 1 , x = 1 不存在 , x = − 1 \lim\limits_{n\to\infty}x^n=\begin{cases}0,|x|<1\\\infty,|x|>1\\1,x=1\\不存在,x=-1\end{cases} nlimxn= 0,x<1,x>11,x=1不存在,x=1
  • lim ⁡ n → ∞ e n x = { 0 , x < 0 + ∞ , x > 0 1 , x = 0 \lim\limits_{n\to\infty}e^{nx}=\begin{cases}0,x<0\\+\infty,x>0\\1,x=0\end{cases} nlimenx= 0,x<0+,x>01,x=0
  • lim ⁡ x → ∞ a n x n + a n − 1 x n − 1 + ⋯ + a 1 x + a 0 b m x m + b m − 1 x m − 1 + ⋯ + b 1 x + b 0 = { a n b m , n = m 0 , n < m ∞ , n > m \lim\limits_{x\to\infty}\frac{a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0}{b_mx^m+b_{m-1}x^{m-1}+\cdots+b_1x+b_0}=\begin{cases}\frac{a_n}{b_m},n=m\\0,n<m\\\infty,n>m\end{cases} xlimbmxm+bm1xm1++b1x+b0anxn+an1xn1++a1x+a0= bman,n=m0,n<m,n>m

1 ∞ 1^∞ 1型极限

lim ⁡ a ( x ) = 0 , lim ⁡ b ( x ) = ∞ \lim a(x)=0,\lim b(x)=\infty lima(x)=0,limb(x)=,且 lim ⁡ a ( x ) b ( x ) = A \lim a(x)b(x)=A lima(x)b(x)=A,则 lim ⁡ ( 1 + a ( x ) ) b ( x ) = e A \lim(1+a(x))^{b(x)}=e^A lim(1+a(x))b(x)=eA。可以归纳为以下三步:

  • 写标准形式:原式= lim ⁡ [ 1 + a ( x ) ] b ( x ) \lim [1+a(x)]^{b(x)} lim[1+a(x)]b(x)
  • 求极限: lim ⁡ a ( x ) b ( x ) = A \lim a(x)b(x)=A lima(x)b(x)=A
  • 写结果:原式 = e A =e^A =eA

利用等价无穷小求极限

在这里插入图片描述

  • a ( x ) → 0 a(x)\to0 a(x)0 a ( x ) b ( x ) → 0 a(x)b(x)\to0 a(x)b(x)0,则 ( 1 + a ( x ) ) b ( x ) − 1 ∼ a ( x ) b ( x ) (1+a(x))^{b(x)}-1\thicksim a(x)b(x) (1+a(x))b(x)1a(x)b(x)
  • 幂和指都是一个整体,不能分开单独换
  • 幂指函数变量代换的时候底数必须大于零或趋于正无穷
  • O ( 低 ) + O ( 高 ) = O ( 低 ) O(低)+O(高)=O(低) O()+O()=O()
  • 变上限积分的等价代换:设 f ( x ) f(x) f(x) g ( x ) g(x) g(x) x = 0 x=0 x=0的某邻域内连续,且 lim ⁡ x → 0 f ( x ) g ( x ) = 1 \lim\limits_{x\to0}\frac{f(x)}{g(x)}=1 x0limg(x)f(x)=1,则 ∫ 0 x f ( x ) d x ∼ ∫ 0 x g ( x ) d x \int^x_0f(x)dx\thicksim\int^x_0g(x)dx 0xf(x)dx0xg(x)dx,其中下限对应 x x x的趋近范围。

利用极限运算法则求极限

  • lim ⁡ f ( x ) = A , lim ⁡ g ( x ) = B \lim f(x)=A,\lim g(x)=B limf(x)=A,limg(x)=B,那么
    • lim ⁡ [ f ( x ) ± g ( x ) ] = lim ⁡ f ( x ) ± lim ⁡ g ( x ) ) \lim[f(x)\pm g(x)]=\lim f(x)\pm \lim g(x)) lim[f(x)±g(x)]=limf(x)±limg(x))
    • lim ⁡ [ f ( x ) × g ( x ) ] = lim ⁡ f ( x ) × lim ⁡ g ( x ) \lim[f(x)\times g(x)]=\lim f(x)\times \lim g(x) lim[f(x)×g(x)]=limf(x)×limg(x)
    • l i m f ( x ) g ( x ) = lim ⁡ f ( x ) lim ⁡ g ( x ) ( B ≠ 0 ) lim\frac{f(x)}{g(x)}=\frac{\lim f(x)}{\lim g(x)}(B≠0) limg(x)f(x)=limg(x)limf(x)(B=0)
  • n n n为正整数,则 lim ⁡ [ f ( x ) ] n = [ lim ⁡ f ( x ) ] n \lim\limits[f(x)]^n=[\lim\limits f(x)]^n lim[f(x)]n=[limf(x)]n
  • 极限非零因子的极限可以先求出来:
    • lim ⁡ f ( x ) = A ≠ 0 ⇒ lim ⁡ f ( x ) g ( x ) = A lim ⁡ g ( x ) \lim f(x)=A≠0\Rightarrow\lim f(x)g(x)=A\lim g(x) limf(x)=A=0limf(x)g(x)=Alimg(x)(不用考虑 lim ⁡ g ( x ) \lim g(x) limg(x)是否存在)
    • 拆出来一个存在且不为零则另一个一定存在
  • 有限个无穷小的和差仍是无穷小。
  • 有限个无穷小的积仍是无穷小。
  • 无穷小量和有界量的积仍是无穷小。
  • 有限个无穷大的乘积也是无穷大。
  • 无穷大量与有界量的和仍为无穷大。
  • lim ⁡ f ( x ) g ( x ) \lim\frac{f(x)}{g(x)} limg(x)f(x)存在,则 lim ⁡ g ( x ) = 0 ⇒ lim ⁡ f ( x ) = 0 \lim g(x)=0\Rightarrow\lim f(x)=0 limg(x)=0limf(x)=0
  • lim ⁡ f ( x ) g ( x ) = A ≠ 0 \lim\frac{f(x)}{g(x)}=A≠0 limg(x)f(x)=A=0,则 lim ⁡ f ( x ) = 0 ⇒ lim ⁡ g ( x ) = 0 \lim f(x)=0\Rightarrow\lim g(x)=0 limf(x)=0limg(x)=0
  • 和差积商:
    • 存在 ± \pm ±存在 = = =存在
    • 存在 ± \pm ±不存在 = = =不存在
    • 不存在 ± \pm ±不存在 = = =不一定
    • 存在 × \times ×存在 = = =存在
    • 存在非无穷小 × \times ×不存在 = = =不存在
    • 无穷小 × \times ×不存在 = = =不一定
    • 不存在 × \times ×不存在 = = =不一定

利用洛必达法则求极限

若:

  • lim ⁡ x → x 0 f ( x ) = lim ⁡ x → x 0 g ( x ) = 0 ( ∞ ) \lim\limits_{x\to x_0}f(x)=\lim\limits_{x\to x_0}g(x)=0(\infty) xx0limf(x)=xx0limg(x)=0()
  • f ( x ) f(x) f(x) g ( x ) g(x) g(x) x 0 x_0 x0的去心邻域内可导
  • g ′ ( x ) ≠ 0 g^{'}(x)≠0 g(x)=0 lim ⁡ x → x 0 f ′ ( x ) g ′ ( x ) \lim\limits_{x\to x_0}\frac{f^{'}(x)}{g^{'}(x)} xx0limg(x)f(x)存在或 ∞ \infty

则:

  • lim ⁡ x → x 0 f ( x ) g ( x ) = lim ⁡ x → x 0 f ′ ( x ) g ′ ( x ) \lim\limits_{x\to x_0}\frac{f(x)}{g(x)}=\lim\limits_{x\to x_0}\frac{f^{'}(x)}{g^{'}(x)} xx0limg(x)f(x)=xx0limg(x)f(x)

洛必达法则可用于求七种类型不定式的极限,即 0 0 , ∞ ∞ , ∞ − ∞ , 0 × ∞ , 1 ∞ , ∞ 0 , 0 0 \frac{0}{0},\frac{\infty}{\infty},\infty-\infty,0\times\infty,1^\infty,\infty^0,0^0 00,,,0×,1,0,00,其中前两种可以直接使用洛必达法则,后五种均可变换为前两种,使用洛必达法则应该注意以下几个问题:

  • 首先检验条件是否满足。
  • 使用洛必达法则之后,如果仍满足洛必达法则条件,可以再次使用洛必达法则。
  • 如果 0 0 , ∞ ∞ \frac{0}{0},\frac{\infty}{\infty} 00,型中的函数含有极限非零的因子,可以单独求极限,不必参与洛必达法则运算。
  • 如果能进行等价无穷小代换或恒等变换配合洛必达法则使用,也可以简化运算。

利用皮亚诺型余项泰勒公式求极限

如果 f ( x ) f(x) f(x) x 0 x_0 x0处有 n n n阶导数,则 f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + . . . + 1 n ! f ( n ) ( x n ) ( x − x 0 ) n + R n ( x ) f(x)=f(x_0)+f'(x_0)(x-x_0)+...+\frac{1}{n!}f^{(n)}(x_n)(x-x_0)^n+R_n(x) f(x)=f(x0)+f(x0)(xx0)+...+n!1f(n)(xn)(xx0)n+Rn(x)常称 R n ( x ) = o [ ( x − x 0 ) n ] ( x → x 0 ) R_n(x)=o[(x-x_0)^n](x\to x_0) Rn(x)=o[(xx0)n](xx0)为皮亚诺型余项,若 x 0 = 0 x_0=0 x0=0,则得麦克劳林公式: f ( x ) = f ( 0 ) + f ′ ( 0 ) x + 1 2 ! f ′ ′ ( 0 ) x 2 + . . . + 1 n ! f ( n ) ( 0 ) x n + o ( x n ) f(x)=f(0)+f'(0)x+\frac{1}{2!}f''(0)x^2+...+\frac{1}{n!}f^{(n)}(0)x^n+o(x^n) f(x)=f(0)+f(0)x+2!1f′′(0)x2+...+n!1f(n)(0)xn+o(xn)几个常用的泰勒公式如下:

  • e x = 1 + x + x 2 2 ! + ⋯ + x n n ! + o ( x n ) e^x=1+x+\frac{x^2}{2!}+\cdots+\frac{x^n}{n!}+o({x^n}) ex=1+x+2!x2++n!xn+o(xn)
  • s i n x = x − x 3 3 ! + ⋯ + ( − 1 ) n − 1 + x 2 n − 1 ( 2 n − 1 ) ! + o ( x 2 n − 1 ) sinx=x-\frac{x^3}{3!}+\cdots+(-1)^{n-1}+\frac{x^{2n-1}}{(2n-1)!}+o({x^{2n-1}}) sinx=x3!x3++(1)n1+(2n1)!x2n1+o(x2n1)
  • c o s x = 1 − x 2 2 ! + ⋯ + ( − 1 ) n + x 2 n ( 2 n ) ! + o ( x 2 n ) cosx=1-\frac{x^2}{2!}+\cdots+(-1)^{n}+\frac{x^{2n}}{(2n)!}+o({x^{2n}}) cosx=12!x2++(1)n+(2n)!x2n+o(x2n)
  • l n ( 1 + x ) = x − x 2 2 + ⋯ + ( − 1 ) n − 1 x n n + o ( x n ) ln(1+x)=x-\frac{x^2}{2}+\cdots+(-1)^{n-1}\frac{x^n}{n}+o(x^n) ln(1+x)=x2x2++(1)n1nxn+o(xn)
  • ( 1 + x ) n = 1 + a x + a ( a − 1 ) 2 ! x 2 + ⋯ + a ( a − 1 ) ⋯ ( a − n + 1 ) n ! x n + o ( x n ) (1+x)^n=1+ax+\frac{a(a-1)}{2!}x^2+\dots+\frac{a(a-1)\cdots(a-n+1)}{n!}x^n+o(x^n) (1+x)n=1+ax+2!a(a1)x2++n!a(a1)(an+1)xn+o(xn)

使用泰勒公式时注意:

  • 相除时上下写到同次
  • 相加减时写到同次幂相减不为零

其它公式

  • lim ⁡ n → ∞ a 1 n + a 2 n + ⋯ + a k n n = m a x ( a i ) \lim\limits_{n\to\infty}\sqrt[n]{a_1^n+a_2^n+\dots+a_k^n}=max(a_i) nlimna1n+a2n++akn =max(ai)
    证明: a = m a x ( a n ) n ≤ lim ⁡ n → ∞ a 1 n + a 2 n + ⋯ + a k n n ≤ k a n n = a a=\sqrt[n]{max(a^n)}\leq\lim\limits_{n\to\infty}\sqrt[n]{a_1^n+a_2^n+\dots+a_k^n}\leq\sqrt[n]{ka^n}=a a=nmax(an) nlimna1n+a2n++akn nkan =a

数列的极限

  • 不定式类极限:数列没有洛必达表达式,此类极限必须化为函数极限求解。

海涅定理

如果极限 lim ⁡ x → x 0 f ( x ) \lim\limits_{x\to x_0}f(x) xx0limf(x)存在, { x n } \{x_n\} {xn}为函数 f ( x ) f(x) f(x)的定义域内任一收敛于 x 0 x_0 x0的数列,且满足 x n ≠ x 0 x_n\neq x_0 xn=x0,那么相应的函数值数列 { f ( x n ) } \{f(x_n)\} {f(xn)}必收敛,且 lim ⁡ n → ∞ = lim ⁡ x → x 0 f ( x ) \lim\limits_{n\to\infty}=\lim\limits_{x\to x_0}f(x) nlim=xx0limf(x)

  • 海涅定理将函数极限和数列极限联系起来,常用于求函数极限不存在但不为 ∞ \infty 的极限
  • 2
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 3
    评论
基于Python的计算思维训练主要涉及到函数的概念。函数是Python中的基本编程结构,通过函数可以将一系列操作封装起来,提高代码的复用性和可维护性。 首先,函数的定义和调用是计算思维中重要的一部分。学习者需要理解如何使用def关键字定义函数,并且学会传入参数和返回数值。这能够帮助他们将复杂的问题拆分成更小的部分,然后再分别解决。 其次,函数的参数和返回值的运用是培养计算思维的有效途径。学习者需要理解函数的参数可以是任意类型的数据,也可以是默认值,还可以是可变数量的参数。同时,他们需要掌握函数可以返回单个数值、多个数值或者其他函数的能力。 此外,函数的嵌套和递归是培养计算思维的重要方法。学习者需要了解函数可以在其内部调用其他函数,从而实现更复杂的功能。而递归则可以帮助他们理解问题的分治和循环求解策略。 最后,函数的高阶用法和闭包也是培养计算思维的关键。学习者需要明白函数可以作为参数传递给其他函数,也可以作为返回值被另一个函数使用。此外,他们还需要掌握闭包的概念和运用,以便更好地理解函数的作用域和生命周期。 通过学习和实践以上内容,学习者不仅可以掌握Python中函数的用法,还可以培养出较强的计算思维能力,从而更好地应对复杂的问题和挑战。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

亻乍屯页女子白勺

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值