1、图像的彩色
通常用于区别颜色的特性是亮度、色调和饱和度。
亮度:表示了色彩明亮程度; |
色调:表示构成该颜色光的不同波长光波中比重最大的光的颜色; |
饱和度:是有色调所对应的光在构成该颜色光中所占的比例,它与所加白光数量成反比。 |
色调与饱和度一起称为色度。
2、图像的色彩空间
机器视觉中常用的颜色图像有灰度图像、RGB(红、绿、蓝)图像、HSI(色调、亮度、饱和度)图像、HSV(色调、饱和度、亮度)图像等。
①灰度图像
灰度图像即单通道图像,每个像素的灰度值为0~255,其中0表示全黑,255表示全白。对于显示或者形态学处理等操作来说,灰度图像已经足够满足要求。因此,为了节约计算量并加快处理速度,一般会将彩色图像转化为灰度图像进行处理。
②RGB图像
彩色图像的表示则需要通道(channel)的概念。在计算机中,我们用红色、绿色和蓝色这三种颜色的组合来表达任意一种色彩。于是对于每一个像素,就要记录其R、G、B 三个数值,每一个数值就称为一个通道。例如,最常见的彩色图像有三个通道,每个通道都由8 位整数表示。在这种规定下,一个像素占据24 位空间。每个通道分别表示R(Red红色)、G(Green绿色)、B(Blue蓝色)3个分量,各自的取值范围都为0~255。将这3种分量组合,可以得到更多的颜色表达方式。
RGB指的是R(red)红色、G(green)绿色、B(blue)蓝色,三种颜色;目前来说,所有的颜色都可以用这三种颜色配出来,RGB各有256级亮度,用数字表示为从0-255,最多为256×256×256=16777216;简称为1600万色或千万色。也称为24位色(2的24次方)。
RGB模型建立在笛卡尔坐标系中。坐标的三个轴分别表示红R,绿G,蓝B三原色。模型的空间是一个正方体,原点对应黑色,距离原点最远的点对应白色。从黑色到白色的灰度值分布再从原点到距离原点最远顶点间的连线上,而立方体内其余各点则对应着不同的彩色,可以用原点到该点的矢量表示。
RGB色彩模型的像素深度即指图像深度。像素深度是指每个像素所用位数(bit),像素深度确定了彩色图像中的每个像素可能有的颜色数,或者确定灰度图像的每个像素可能的灰度级数。它决定了彩色图像中可出现的最多颜色数,或灰度图像中的最大灰度等级。
像素深度(图像深度)与颜色深度(色彩深度)的区别 1、概念不同 像素深度,是指存储每个像素所用的位数,也用它来度量图像的分辨率。像素深度决定彩色图像的每个像素可能有的颜色数,或者确定灰度图像的每个像素可能有的灰度级数。 例如,一幅彩色图像的每个像素用R,G,B三个分量表示,若每个分量用8位,那么一个像素共用24位表示,就说像素的深度为24,每个像素可以是16 777 216(2的24次方)种颜色中的一种。在这个意义上,往往把像素深度说成是图像深度。表示一个像素的位数越多,它能表达的颜色数目就越多,而它的深度就越深。 颜色深度,简单说就是最多支持多少种颜色。一般是用“位”来描述的。例如,如果一个图片支持256种颜色(如GIF格式),那么就需要256个不同的值来表示不同的颜色,也就是从0到255。用二进制表示就是从00000000到11111111,总共需要8位二进制数。所以颜色深度是8。 2、原理不同 RGB图像的每个像素用R,G,B三个分量表示,若每个分量用8位,那么一个像素共用24位表示,就说像素的深度为24。 例如:BMP格式,支持红、绿、蓝各256种,不同的红绿蓝组合可以构成256的3次方种颜色,就需要3个8位的2进制数,总共24位。所以颜色深度是24。 色彩深度表示的就是一个图像中的色彩精度,深度越大表示的色彩就越多。 |